• Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

The Craft of Writing a Strong Hypothesis

Deeptanshu D

Table of Contents

Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.

A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.

What is a Hypothesis?

The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper .

The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.

The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.

The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.

Different Types of Hypotheses‌

Types-of-hypotheses

Types of hypotheses

Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.

Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.

1. Null hypothesis

A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.

2. Alternative hypothesis

Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good  alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.

  • Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
  • Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'

3. Simple hypothesis

A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.

4. Complex hypothesis

In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.

5. Associative and casual hypothesis

Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.

6. Empirical hypothesis

Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.

Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher  the statement after assessing a group of women who take iron tablets and charting the findings.

7. Statistical hypothesis

The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.

Characteristics of a Good Hypothesis

Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:

  • A research hypothesis has to be simple yet clear to look justifiable enough.
  • It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
  • It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
  • A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
  • If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
  • A hypothesis must keep and reflect the scope for further investigations and experiments.

Separating a Hypothesis from a Prediction

Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.

A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.

Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.

For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.

Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.

Finally, How to Write a Hypothesis

Quick-tips-on-how-to-write-a-hypothesis

Quick tips on writing a hypothesis

1.  Be clear about your research question

A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.

2. Carry out a recce

Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.

Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.

3. Create a 3-dimensional hypothesis

Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.

In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.

4. Write the first draft

Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.

Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.

5. Proof your hypothesis

After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.

Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.

Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.

Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.

It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.

If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.

Frequently Asked Questions (FAQs)

1. what is the definition of hypothesis.

According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.

2. What is an example of hypothesis?

The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."

3. What is an example of null hypothesis?

A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."

4. What are the types of research?

• Fundamental research

• Applied research

• Qualitative research

• Quantitative research

• Mixed research

• Exploratory research

• Longitudinal research

• Cross-sectional research

• Field research

• Laboratory research

• Fixed research

• Flexible research

• Action research

• Policy research

• Classification research

• Comparative research

• Causal research

• Inductive research

• Deductive research

5. How to write a hypothesis?

• Your hypothesis should be able to predict the relationship and outcome.

• Avoid wordiness by keeping it simple and brief.

• Your hypothesis should contain observable and testable outcomes.

• Your hypothesis should be relevant to the research question.

6. What are the 2 types of hypothesis?

• Null hypotheses are used to test the claim that "there is no difference between two groups of data".

• Alternative hypotheses test the claim that "there is a difference between two data groups".

7. Difference between research question and research hypothesis?

A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.

8. What is plural for hypothesis?

The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."

9. What is the red queen hypothesis?

The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.

10. Who is known as the father of null hypothesis?

The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.

11. When to reject null hypothesis?

You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.

forms of hypothesis in research methodology

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing - Quick Guide (2024)

Educational resources and simple solutions for your research journey

Research hypothesis: What it is, how to write it, types, and examples

What is a Research Hypothesis: How to Write it, Types, and Examples

forms of hypothesis in research methodology

Any research begins with a research question and a research hypothesis . A research question alone may not suffice to design the experiment(s) needed to answer it. A hypothesis is central to the scientific method. But what is a hypothesis ? A hypothesis is a testable statement that proposes a possible explanation to a phenomenon, and it may include a prediction. Next, you may ask what is a research hypothesis ? Simply put, a research hypothesis is a prediction or educated guess about the relationship between the variables that you want to investigate.  

It is important to be thorough when developing your research hypothesis. Shortcomings in the framing of a hypothesis can affect the study design and the results. A better understanding of the research hypothesis definition and characteristics of a good hypothesis will make it easier for you to develop your own hypothesis for your research. Let’s dive in to know more about the types of research hypothesis , how to write a research hypothesis , and some research hypothesis examples .  

Table of Contents

What is a hypothesis ?  

A hypothesis is based on the existing body of knowledge in a study area. Framed before the data are collected, a hypothesis states the tentative relationship between independent and dependent variables, along with a prediction of the outcome.  

What is a research hypothesis ?  

Young researchers starting out their journey are usually brimming with questions like “ What is a hypothesis ?” “ What is a research hypothesis ?” “How can I write a good research hypothesis ?”   

A research hypothesis is a statement that proposes a possible explanation for an observable phenomenon or pattern. It guides the direction of a study and predicts the outcome of the investigation. A research hypothesis is testable, i.e., it can be supported or disproven through experimentation or observation.     

forms of hypothesis in research methodology

Characteristics of a good hypothesis  

Here are the characteristics of a good hypothesis :  

  • Clearly formulated and free of language errors and ambiguity  
  • Concise and not unnecessarily verbose  
  • Has clearly defined variables  
  • Testable and stated in a way that allows for it to be disproven  
  • Can be tested using a research design that is feasible, ethical, and practical   
  • Specific and relevant to the research problem  
  • Rooted in a thorough literature search  
  • Can generate new knowledge or understanding.  

How to create an effective research hypothesis  

A study begins with the formulation of a research question. A researcher then performs background research. This background information forms the basis for building a good research hypothesis . The researcher then performs experiments, collects, and analyzes the data, interprets the findings, and ultimately, determines if the findings support or negate the original hypothesis.  

Let’s look at each step for creating an effective, testable, and good research hypothesis :  

  • Identify a research problem or question: Start by identifying a specific research problem.   
  • Review the literature: Conduct an in-depth review of the existing literature related to the research problem to grasp the current knowledge and gaps in the field.   
  • Formulate a clear and testable hypothesis : Based on the research question, use existing knowledge to form a clear and testable hypothesis . The hypothesis should state a predicted relationship between two or more variables that can be measured and manipulated. Improve the original draft till it is clear and meaningful.  
  • State the null hypothesis: The null hypothesis is a statement that there is no relationship between the variables you are studying.   
  • Define the population and sample: Clearly define the population you are studying and the sample you will be using for your research.  
  • Select appropriate methods for testing the hypothesis: Select appropriate research methods, such as experiments, surveys, or observational studies, which will allow you to test your research hypothesis .  

Remember that creating a research hypothesis is an iterative process, i.e., you might have to revise it based on the data you collect. You may need to test and reject several hypotheses before answering the research problem.  

How to write a research hypothesis  

When you start writing a research hypothesis , you use an “if–then” statement format, which states the predicted relationship between two or more variables. Clearly identify the independent variables (the variables being changed) and the dependent variables (the variables being measured), as well as the population you are studying. Review and revise your hypothesis as needed.  

An example of a research hypothesis in this format is as follows:  

“ If [athletes] follow [cold water showers daily], then their [endurance] increases.”  

Population: athletes  

Independent variable: daily cold water showers  

Dependent variable: endurance  

You may have understood the characteristics of a good hypothesis . But note that a research hypothesis is not always confirmed; a researcher should be prepared to accept or reject the hypothesis based on the study findings.  

forms of hypothesis in research methodology

Research hypothesis checklist  

Following from above, here is a 10-point checklist for a good research hypothesis :  

  • Testable: A research hypothesis should be able to be tested via experimentation or observation.  
  • Specific: A research hypothesis should clearly state the relationship between the variables being studied.  
  • Based on prior research: A research hypothesis should be based on existing knowledge and previous research in the field.  
  • Falsifiable: A research hypothesis should be able to be disproven through testing.  
  • Clear and concise: A research hypothesis should be stated in a clear and concise manner.  
  • Logical: A research hypothesis should be logical and consistent with current understanding of the subject.  
  • Relevant: A research hypothesis should be relevant to the research question and objectives.  
  • Feasible: A research hypothesis should be feasible to test within the scope of the study.  
  • Reflects the population: A research hypothesis should consider the population or sample being studied.  
  • Uncomplicated: A good research hypothesis is written in a way that is easy for the target audience to understand.  

By following this research hypothesis checklist , you will be able to create a research hypothesis that is strong, well-constructed, and more likely to yield meaningful results.  

Research hypothesis: What it is, how to write it, types, and examples

Types of research hypothesis  

Different types of research hypothesis are used in scientific research:  

1. Null hypothesis:

A null hypothesis states that there is no change in the dependent variable due to changes to the independent variable. This means that the results are due to chance and are not significant. A null hypothesis is denoted as H0 and is stated as the opposite of what the alternative hypothesis states.   

Example: “ The newly identified virus is not zoonotic .”  

2. Alternative hypothesis:

This states that there is a significant difference or relationship between the variables being studied. It is denoted as H1 or Ha and is usually accepted or rejected in favor of the null hypothesis.  

Example: “ The newly identified virus is zoonotic .”  

3. Directional hypothesis :

This specifies the direction of the relationship or difference between variables; therefore, it tends to use terms like increase, decrease, positive, negative, more, or less.   

Example: “ The inclusion of intervention X decreases infant mortality compared to the original treatment .”   

4. Non-directional hypothesis:

While it does not predict the exact direction or nature of the relationship between the two variables, a non-directional hypothesis states the existence of a relationship or difference between variables but not the direction, nature, or magnitude of the relationship. A non-directional hypothesis may be used when there is no underlying theory or when findings contradict previous research.  

Example, “ Cats and dogs differ in the amount of affection they express .”  

5. Simple hypothesis :

A simple hypothesis only predicts the relationship between one independent and another independent variable.  

Example: “ Applying sunscreen every day slows skin aging .”  

6 . Complex hypothesis :

A complex hypothesis states the relationship or difference between two or more independent and dependent variables.   

Example: “ Applying sunscreen every day slows skin aging, reduces sun burn, and reduces the chances of skin cancer .” (Here, the three dependent variables are slowing skin aging, reducing sun burn, and reducing the chances of skin cancer.)  

7. Associative hypothesis:  

An associative hypothesis states that a change in one variable results in the change of the other variable. The associative hypothesis defines interdependency between variables.  

Example: “ There is a positive association between physical activity levels and overall health .”  

8 . Causal hypothesis:

A causal hypothesis proposes a cause-and-effect interaction between variables.  

Example: “ Long-term alcohol use causes liver damage .”  

Note that some of the types of research hypothesis mentioned above might overlap. The types of hypothesis chosen will depend on the research question and the objective of the study.  

forms of hypothesis in research methodology

Research hypothesis examples  

Here are some good research hypothesis examples :  

“The use of a specific type of therapy will lead to a reduction in symptoms of depression in individuals with a history of major depressive disorder.”  

“Providing educational interventions on healthy eating habits will result in weight loss in overweight individuals.”  

“Plants that are exposed to certain types of music will grow taller than those that are not exposed to music.”  

“The use of the plant growth regulator X will lead to an increase in the number of flowers produced by plants.”  

Characteristics that make a research hypothesis weak are unclear variables, unoriginality, being too general or too vague, and being untestable. A weak hypothesis leads to weak research and improper methods.   

Some bad research hypothesis examples (and the reasons why they are “bad”) are as follows:  

“This study will show that treatment X is better than any other treatment . ” (This statement is not testable, too broad, and does not consider other treatments that may be effective.)  

“This study will prove that this type of therapy is effective for all mental disorders . ” (This statement is too broad and not testable as mental disorders are complex and different disorders may respond differently to different types of therapy.)  

“Plants can communicate with each other through telepathy . ” (This statement is not testable and lacks a scientific basis.)  

Importance of testable hypothesis  

If a research hypothesis is not testable, the results will not prove or disprove anything meaningful. The conclusions will be vague at best. A testable hypothesis helps a researcher focus on the study outcome and understand the implication of the question and the different variables involved. A testable hypothesis helps a researcher make precise predictions based on prior research.  

To be considered testable, there must be a way to prove that the hypothesis is true or false; further, the results of the hypothesis must be reproducible.  

Research hypothesis: What it is, how to write it, types, and examples

Frequently Asked Questions (FAQs) on research hypothesis  

1. What is the difference between research question and research hypothesis ?  

A research question defines the problem and helps outline the study objective(s). It is an open-ended statement that is exploratory or probing in nature. Therefore, it does not make predictions or assumptions. It helps a researcher identify what information to collect. A research hypothesis , however, is a specific, testable prediction about the relationship between variables. Accordingly, it guides the study design and data analysis approach.

2. When to reject null hypothesis ?

A null hypothesis should be rejected when the evidence from a statistical test shows that it is unlikely to be true. This happens when the test statistic (e.g., p -value) is less than the defined significance level (e.g., 0.05). Rejecting the null hypothesis does not necessarily mean that the alternative hypothesis is true; it simply means that the evidence found is not compatible with the null hypothesis.  

3. How can I be sure my hypothesis is testable?  

A testable hypothesis should be specific and measurable, and it should state a clear relationship between variables that can be tested with data. To ensure that your hypothesis is testable, consider the following:  

  • Clearly define the key variables in your hypothesis. You should be able to measure and manipulate these variables in a way that allows you to test the hypothesis.  
  • The hypothesis should predict a specific outcome or relationship between variables that can be measured or quantified.   
  • You should be able to collect the necessary data within the constraints of your study.  
  • It should be possible for other researchers to replicate your study, using the same methods and variables.   
  • Your hypothesis should be testable by using appropriate statistical analysis techniques, so you can draw conclusions, and make inferences about the population from the sample data.  
  • The hypothesis should be able to be disproven or rejected through the collection of data.  

4. How do I revise my research hypothesis if my data does not support it?  

If your data does not support your research hypothesis , you will need to revise it or develop a new one. You should examine your data carefully and identify any patterns or anomalies, re-examine your research question, and/or revisit your theory to look for any alternative explanations for your results. Based on your review of the data, literature, and theories, modify your research hypothesis to better align it with the results you obtained. Use your revised hypothesis to guide your research design and data collection. It is important to remain objective throughout the process.  

5. I am performing exploratory research. Do I need to formulate a research hypothesis?  

As opposed to “confirmatory” research, where a researcher has some idea about the relationship between the variables under investigation, exploratory research (or hypothesis-generating research) looks into a completely new topic about which limited information is available. Therefore, the researcher will not have any prior hypotheses. In such cases, a researcher will need to develop a post-hoc hypothesis. A post-hoc research hypothesis is generated after these results are known.  

6. How is a research hypothesis different from a research question?

A research question is an inquiry about a specific topic or phenomenon, typically expressed as a question. It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis.

7. Can a research hypothesis change during the research process?

Yes, research hypotheses can change during the research process. As researchers collect and analyze data, new insights and information may emerge that require modification or refinement of the initial hypotheses. This can be due to unexpected findings, limitations in the original hypotheses, or the need to explore additional dimensions of the research topic. Flexibility is crucial in research, allowing for adaptation and adjustment of hypotheses to align with the evolving understanding of the subject matter.

8. How many hypotheses should be included in a research study?

The number of research hypotheses in a research study varies depending on the nature and scope of the research. It is not necessary to have multiple hypotheses in every study. Some studies may have only one primary hypothesis, while others may have several related hypotheses. The number of hypotheses should be determined based on the research objectives, research questions, and the complexity of the research topic. It is important to ensure that the hypotheses are focused, testable, and directly related to the research aims.

9. Can research hypotheses be used in qualitative research?

Yes, research hypotheses can be used in qualitative research, although they are more commonly associated with quantitative research. In qualitative research, hypotheses may be formulated as tentative or exploratory statements that guide the investigation. Instead of testing hypotheses through statistical analysis, qualitative researchers may use the hypotheses to guide data collection and analysis, seeking to uncover patterns, themes, or relationships within the qualitative data. The emphasis in qualitative research is often on generating insights and understanding rather than confirming or rejecting specific research hypotheses through statistical testing.

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

Back to school 2024 sale

Back to School – Lock-in All Access Pack for a Year at the Best Price

journal turnaround time

Journal Turnaround Time: Researcher.Life and Scholarly Intelligence Join Hands to Empower Researchers with Publication Time Insights 

Researchmate.net logo

7 Types of Research Hypothesis: Examples, Significance and Step-By-Step Guide

Introduction.

In any research study, a research hypothesis plays a crucial role in guiding the investigation and providing a clear direction for the research. It is an essential component of a thesis as it helps to frame the research question and determine the methodology to be used.

Research hypotheses are important in guiding the direction of a study, providing a basis for data collection and analysis, and helping to validate the research findings.

This article will provide a detailed analysis of research hypotheses in a thesis, highlighting their significance and qualities. It will also explore different types of research hypotheses and provide illustrative examples. Additionally, a step-by-step guide to developing research hypotheses and methods for testing and validating them will be discussed. By the end of this article, readers will have a comprehensive understanding of research hypotheses and their role in a thesis.

Understanding Research Hypotheses in a Thesis

A research hypothesis is a statement of expectation or prediction that will be tested by research. In a thesis, a research hypothesis is formulated to address the research question or problem statement . It serves as a tentative answer or explanation to the research question. The research hypothesis guides the direction of the study and helps in determining the research design and methodology.

The research hypothesis is typically based on existing theories, previous research findings, or observations. It is formulated after a thorough review of the literature and understanding of the research area. A well-defined research hypothesis provides a clear focus for the study and helps in generating testable predictions. By testing the research hypothesis, researchers aim to gather evidence to support or reject the hypothesis. This process contributes to the advancement of knowledge in the field and helps in drawing meaningful conclusions.

Significance of Research Hypotheses in a Thesis

One of the key significance of research hypotheses is that they help in organizing and structuring the research study. By formulating a hypothesis, the researcher defines the specific research question and identifies the variables that will be investigated. This helps in narrowing down the scope of the study and ensures that the research is focused and targeted.

Moreover, research hypotheses provide a framework for data collection and analysis. They guide the researcher in selecting appropriate research methods , tools, and techniques to gather relevant data. The hypotheses also help in determining the statistical tests and analysis techniques that will be used to analyze the collected data.

Another significance of research hypotheses is that they contribute to the advancement of knowledge in a particular field. By formulating hypotheses and conducting research to test them, researchers are able to generate new insights, theories, and explanations. This contributes to the existing body of knowledge and helps in expanding the understanding of a specific phenomenon or topic.

Furthermore, research hypotheses are important for establishing the validity and reliability of the research findings. By formulating clear and testable hypotheses, researchers can ensure that their study is based on sound scientific principles. The hypotheses provide a basis for evaluating the accuracy and generalizability of the research results.

In addition, research hypotheses are essential for making informed decisions and recommendations based on the research findings. They help in drawing conclusions and making predictions about the relationship between variables. This information can be used to inform policy decisions, develop interventions, or guide future research in the field.

Qualities of an Effective Research Hypothesis in a Thesis

An effective research hypothesis in a thesis possesses several key qualities that contribute to its strength and validity. These qualities are essential for ensuring that the hypothesis can be tested and validated through empirical research. The following are some of the qualities that make a research hypothesis effective:

1. Specificity: A good research hypothesis is specific and clearly defines the variables and the relationship between them. It provides a clear direction for the research and allows for precise testing of the hypothesis.

2. Testability: An effective hypothesis in research is testable, meaning that it can be empirically examined and either supported or refuted through data analysis. It should be possible to design experiments or collect data that can provide evidence for or against the hypothesis.

3. Clarity: A research hypothesis should be written in clear and concise language. It should avoid ambiguity and ensure that the intended meaning is easily understood by the readers. Clear language helps in communicating the hypothesis effectively and facilitates its evaluation.

4. Falsifiability: A strong research hypothesis is falsifiable, which means that it is possible to prove it wrong. It should be formulated in a way that allows for the possibility of obtaining evidence that contradicts the hypothesis. This is important for the scientific process as it encourages critical thinking and the exploration of alternative explanations.

5. Relevance: An effective research hypothesis is relevant to the research question and the overall objectives of the study. It should address a significant gap in knowledge or contribute to the existing body of literature. A relevant hypothesis adds value to the research and increases its significance.

6. Novelty: A good research hypothesis is original and innovative. It should propose a new idea or approach that has not been extensively explored before. Novelty in the hypothesis increases the potential for new discoveries and contributes to the advancement of knowledge in the field.

7. Coherence: An effective research hypothesis should be coherent and consistent with existing theories, concepts, and empirical evidence. It should align with the current understanding of the topic and build upon previous research. Coherence ensures that the hypothesis is grounded in a solid foundation and enhances its credibility.

8. Measurability: A research hypothesis should be measurable, meaning that it can be quantitatively or qualitatively assessed. It should be possible to collect data or evidence that can be used to evaluate the hypothesis. Measurability allows for objective testing and increases the reliability of the research findings.

By incorporating these qualities into the formulation of a research hypothesis, researchers can enhance the validity and reliability of their study.

Different Types of Research Hypotheses in a Thesis

In a thesis, there are several different types of research hypotheses that can be used to test the relationship between variables. These hypotheses provide a framework for the research and guide the direction of the study. Understanding the different types of research hypotheses is essential for conducting a comprehensive and effective thesis.

Null Hypothesis

The null hypothesis is a statement that suggests there is no significant relationship between the variables being studied. It assumes that any observed differences or relationships are due to chance or random variation. The null hypothesis is denoted as H0 and is often used as a starting point for hypothesis testing.

Alternative Hypothesis

The alternative hypothesis, also known as the research hypothesis, is a statement that suggests there is a significant relationship between the variables being studied. It contradicts the null hypothesis and proposes that the observed differences or relationships are not due to chance.

Directional Hypothesis

A directional hypothesis is a specific type of alternative hypothesis that predicts the direction of the relationship between variables. It states that there is a positive or negative relationship between the variables, indicating the direction of the effect.

Non-Directional Hypothesis

In contrast to a directional hypothesis, a non-directional hypothesis does not predict the direction of the relationship between variables. It simply states that there is a relationship between the variables without specifying the direction of the effect.

Statistical Hypothesis

A statistical hypothesis is a hypothesis that is formulated based on statistical analysis. It involves using statistical tests to determine the likelihood of the observed data occurring under the null hypothesis.

Associative Hypothesis

An associative hypothesis suggests that there is a relationship between variables, but it does not imply causation. It indicates that changes in one variable are associated with changes in another variable.

Causal Hypothesis

A causal hypothesis proposes a cause-and-effect relationship between variables. It suggests that changes in one variable directly cause changes in another variable.

These different types of research hypotheses provide researchers with various options to explore and test the relationships between variables in a thesis. The choice of hypothesis depends on the research question, the nature of the variables, and the available data.

Illustrative Examples of Research Hypotheses in a Thesis

To better understand research hypotheses in a thesis, let’s explore some illustrative examples. These examples will demonstrate how hypotheses are formulated and tested in different research studies.

Example 1: Hypothesis for a study on the effects of exercise on weight loss:

Null Hypothesis (H0): There is no significant difference in weight loss between individuals who engage in regular exercise and those who do not.

Alternative Hypothesis (H1): Individuals who engage in regular exercise will experience greater weight loss compared to those who do not exercise.

Example 2: Hypothesis for a study on the impact of social media on self-esteem:

Null Hypothesis (H0): There is no significant relationship between social media usage and self-esteem levels.

Alternative Hypothesis (H1): Increased social media usage is associated with lower self-esteem levels.

Example 3: Hypothesis for a study on the effectiveness of a new teaching method in improving student performance:

Null Hypothesis (H0): There is no significant difference in student performance between the traditional teaching method and the new teaching method.

Alternative Hypothesis (H1): The new teaching method leads to improved student performance compared to the traditional teaching method.

These examples highlight the structure of research hypotheses, where the null hypothesis represents no effect or relationship, while the alternative hypothesis suggests the presence of an effect or relationship. It is important to note that these hypotheses are testable and can be analyzed using appropriate statistical methods.

Step-by-Step Guide to Developing Research Hypotheses in a Thesis

Developing a research hypothesis is a crucial step in the process of conducting a thesis. In this section, we will provide a step-by-step guide to developing research hypotheses in a thesis.

Step 1: Identify the Research Topic

The first step in developing a research hypothesis is to clearly identify the research topic. This involves understanding the research problem and determining the specific area of study.

Step 2: Conduct Preliminary Research

Once the research topic is identified, it is important to conduct preliminary research to gather relevant information. This helps in understanding the existing knowledge and identifying any gaps or areas that need further investigation.

Step 3: Formulate the Research Question

Based on the preliminary research, formulate a clear and concise research question. The research question should be specific and focused, addressing the research problem identified in step 1.

Step 4: Define the Variables

Identify the variables that will be studied in the research. Variables are the factors or concepts that are being measured or manipulated in the study. It is important to clearly define the variables to ensure the research hypothesis is specific and testable.

Step 5: Predict the Relationship and Outcome

The research hypothesis should propose a link between the variables and predict the expected outcome. It should clearly state the expected relationship between the variables and the anticipated result.

Step 6: Ensure Clarity and Conciseness

A good research hypothesis should be simple and concise, avoiding wordiness. It should be clear and free from ambiguity or assumptions about the readers’ knowledge. The hypothesis should also be observable and measurable.

Step 7: Validate the Hypothesis

Before finalizing the research hypothesis, it is important to validate it. This can be done through further research, literature review , or consultation with experts in the field. Validating the hypothesis ensures its relevance and novelty.

By following these step-by-step guidelines, researchers can develop effective research hypotheses for their theses. A well-developed hypothesis provides a solid foundation for the research and helps in generating meaningful results.

Methods for Testing and Validating Research Hypotheses in a Thesis

Hypothesis testing is a formal procedure for investigating our ideas about the world. It allows you to statistically test your predictions. The usual process is to make a hypothesis, create an experiment to test it, run the experiment, draw a conclusion, and then allow other researchers to replicate the study to validate the findings. There are several methods for testing and validating research hypotheses in a thesis.

Experimental Research

One common method is experimental research, where researchers manipulate variables and measure their effects on the dependent variable.

Observational Research

Another method is observational research, where researchers observe and record data without manipulating variables. This method is often used when it is not feasible or ethical to conduct experiments.

Survey Research

Survey research is another method that involves collecting data from a sample of individuals using questionnaires or interviews . This method is useful for studying attitudes, opinions, and behaviors.

Conducting Meta-analysis

In addition to these methods, researchers can also use existing data or conduct meta-analyses to test and validate research hypotheses. Existing data can be obtained from sources such as government databases, previous studies, or publicly available datasets. Meta-analysis involves combining the results of multiple studies to determine the overall effect size and to test the generalizability of findings across different populations and contexts. Once the data is collected, researchers can use statistical analysis techniques to analyze the data and test the research hypotheses. Common statistical tests include t-tests, analysis of variance (ANOVA), regression analysis, and chi-square tests.

The choice of statistical test depends on the research design, the type of data collected, and the specific research hypotheses being tested. It is important to note that testing and validating research hypotheses is an iterative process. Researchers may need to refine their hypotheses, modify their research design, or collect additional data based on the initial findings. By using rigorous methods for testing and validating research hypotheses, researchers can ensure the reliability and validity of their findings, contributing to the advancement of knowledge in their field.

In conclusion, research hypotheses are essential components of a thesis that guide the research process and contribute to the advancement of knowledge in a particular field. By formulating clear and testable hypotheses, researchers can make meaningful contributions to their field and address important research questions. It is important for researchers to carefully develop and validate their hypotheses to ensure the credibility and reliability of their findings.

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Related articles

Research Questions

How to Formulate Research Questions in a Research Proposal? Discover The No. 1 Easiest Template Here!

Chatgpt-Best-Literature-Review-Generator

7 Easy Step-By-Step Guide of Using ChatGPT: The Best Literature Review Generator for Time-Saving Academic Research

Writing-Engaging-Introduction-in-Research-Papers

Writing Engaging Introduction in Research Papers : 7 Tips and Tricks!

Comparative-Frameworks-

Understanding Comparative Frameworks: Their Importance, Components, Examples and 8 Best Practices

artificial-intelligence-in-thesis-writing-for-phd-students

Revolutionizing Effective Thesis Writing for PhD Students Using Artificial Intelligence!

Interviews-as-One-of-Qualitative-Research-Instruments

3 Types of Interviews in Qualitative Research: An Essential Research Instrument and Handy Tips to Conduct Them

highlight abstracts

Highlight Abstracts: An Ultimate Guide For Researchers!

Critical abstracts

Crafting Critical Abstracts: 11 Expert Strategies for Summarizing Research

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

forms of hypothesis in research methodology

Home Market Research

Research Hypothesis: What It Is, Types + How to Develop?

A research hypothesis proposes a link between variables. Uncover its types and the secrets to creating hypotheses for scientific inquiry.

A research study starts with a question. Researchers worldwide ask questions and create research hypotheses. The effectiveness of research relies on developing a good research hypothesis. Examples of research hypotheses can guide researchers in writing effective ones.

In this blog, we’ll learn what a research hypothesis is, why it’s important in research, and the different types used in science. We’ll also guide you through creating your research hypothesis and discussing ways to test and evaluate it.

What is a Research Hypothesis?

A hypothesis is like a guess or idea that you suggest to check if it’s true. A research hypothesis is a statement that brings up a question and predicts what might happen.

It’s really important in the scientific method and is used in experiments to figure things out. Essentially, it’s an educated guess about how things are connected in the research.

A research hypothesis usually includes pointing out the independent variable (the thing they’re changing or studying) and the dependent variable (the result they’re measuring or watching). It helps plan how to gather and analyze data to see if there’s evidence to support or deny the expected connection between these variables.

Importance of Hypothesis in Research

Hypotheses are really important in research. They help design studies, allow for practical testing, and add to our scientific knowledge. Their main role is to organize research projects, making them purposeful, focused, and valuable to the scientific community. Let’s look at some key reasons why they matter:

  • A research hypothesis helps test theories.

A hypothesis plays a pivotal role in the scientific method by providing a basis for testing existing theories. For example, a hypothesis might test the predictive power of a psychological theory on human behavior.

  • It serves as a great platform for investigation activities.

It serves as a launching pad for investigation activities, which offers researchers a clear starting point. A research hypothesis can explore the relationship between exercise and stress reduction.

  • Hypothesis guides the research work or study.

A well-formulated hypothesis guides the entire research process. It ensures that the study remains focused and purposeful. For instance, a hypothesis about the impact of social media on interpersonal relationships provides clear guidance for a study.

  • Hypothesis sometimes suggests theories.

In some cases, a hypothesis can suggest new theories or modifications to existing ones. For example, a hypothesis testing the effectiveness of a new drug might prompt a reconsideration of current medical theories.

  • It helps in knowing the data needs.

A hypothesis clarifies the data requirements for a study, ensuring that researchers collect the necessary information—a hypothesis guiding the collection of demographic data to analyze the influence of age on a particular phenomenon.

  • The hypothesis explains social phenomena.

Hypotheses are instrumental in explaining complex social phenomena. For instance, a hypothesis might explore the relationship between economic factors and crime rates in a given community.

  • Hypothesis provides a relationship between phenomena for empirical Testing.

Hypotheses establish clear relationships between phenomena, paving the way for empirical testing. An example could be a hypothesis exploring the correlation between sleep patterns and academic performance.

  • It helps in knowing the most suitable analysis technique.

A hypothesis guides researchers in selecting the most appropriate analysis techniques for their data. For example, a hypothesis focusing on the effectiveness of a teaching method may lead to the choice of statistical analyses best suited for educational research.

Characteristics of a Good Research Hypothesis

A hypothesis is a specific idea that you can test in a study. It often comes from looking at past research and theories. A good hypothesis usually starts with a research question that you can explore through background research. For it to be effective, consider these key characteristics:

  • Clear and Focused Language: A good hypothesis uses clear and focused language to avoid confusion and ensure everyone understands it.
  • Related to the Research Topic: The hypothesis should directly relate to the research topic, acting as a bridge between the specific question and the broader study.
  • Testable: An effective hypothesis can be tested, meaning its prediction can be checked with real data to support or challenge the proposed relationship.
  • Potential for Exploration: A good hypothesis often comes from a research question that invites further exploration. Doing background research helps find gaps and potential areas to investigate.
  • Includes Variables: The hypothesis should clearly state both the independent and dependent variables, specifying the factors being studied and the expected outcomes.
  • Ethical Considerations: Check if variables can be manipulated without breaking ethical standards. It’s crucial to maintain ethical research practices.
  • Predicts Outcomes: The hypothesis should predict the expected relationship and outcome, acting as a roadmap for the study and guiding data collection and analysis.
  • Simple and Concise: A good hypothesis avoids unnecessary complexity and is simple and concise, expressing the essence of the proposed relationship clearly.
  • Clear and Assumption-Free: The hypothesis should be clear and free from assumptions about the reader’s prior knowledge, ensuring universal understanding.
  • Observable and Testable Results: A strong hypothesis implies research that produces observable and testable results, making sure the study’s outcomes can be effectively measured and analyzed.

When you use these characteristics as a checklist, it can help you create a good research hypothesis. It’ll guide improving and strengthening the hypothesis, identifying any weaknesses, and making necessary changes. Crafting a hypothesis with these features helps you conduct a thorough and insightful research study.

Types of Research Hypotheses

The research hypothesis comes in various types, each serving a specific purpose in guiding the scientific investigation. Knowing the differences will make it easier for you to create your own hypothesis. Here’s an overview of the common types:

01. Null Hypothesis

The null hypothesis states that there is no connection between two considered variables or that two groups are unrelated. As discussed earlier, a hypothesis is an unproven assumption lacking sufficient supporting data. It serves as the statement researchers aim to disprove. It is testable, verifiable, and can be rejected.

For example, if you’re studying the relationship between Project A and Project B, assuming both projects are of equal standard is your null hypothesis. It needs to be specific for your study.

02. Alternative Hypothesis

The alternative hypothesis is basically another option to the null hypothesis. It involves looking for a significant change or alternative that could lead you to reject the null hypothesis. It’s a different idea compared to the null hypothesis.

When you create a null hypothesis, you’re making an educated guess about whether something is true or if there’s a connection between that thing and another variable. If the null view suggests something is correct, the alternative hypothesis says it’s incorrect. 

For instance, if your null hypothesis is “I’m going to be $1000 richer,” the alternative hypothesis would be “I’m not going to get $1000 or be richer.”

03. Directional Hypothesis

The directional hypothesis predicts the direction of the relationship between independent and dependent variables. They specify whether the effect will be positive or negative.

If you increase your study hours, you will experience a positive association with your exam scores. This hypothesis suggests that as you increase the independent variable (study hours), there will also be an increase in the dependent variable (exam scores).

04. Non-directional Hypothesis

The non-directional hypothesis predicts the existence of a relationship between variables but does not specify the direction of the effect. It suggests that there will be a significant difference or relationship, but it does not predict the nature of that difference.

For example, you will find no notable difference in test scores between students who receive the educational intervention and those who do not. However, once you compare the test scores of the two groups, you will notice an important difference.

05. Simple Hypothesis

A simple hypothesis predicts a relationship between one dependent variable and one independent variable without specifying the nature of that relationship. It’s simple and usually used when we don’t know much about how the two things are connected.

For example, if you adopt effective study habits, you will achieve higher exam scores than those with poor study habits.

06. Complex Hypothesis

A complex hypothesis is an idea that specifies a relationship between multiple independent and dependent variables. It is a more detailed idea than a simple hypothesis.

While a simple view suggests a straightforward cause-and-effect relationship between two things, a complex hypothesis involves many factors and how they’re connected to each other.

For example, when you increase your study time, you tend to achieve higher exam scores. The connection between your study time and exam performance is affected by various factors, including the quality of your sleep, your motivation levels, and the effectiveness of your study techniques.

If you sleep well, stay highly motivated, and use effective study strategies, you may observe a more robust positive correlation between the time you spend studying and your exam scores, unlike those who may lack these factors.

07. Associative Hypothesis

An associative hypothesis proposes a connection between two things without saying that one causes the other. Basically, it suggests that when one thing changes, the other changes too, but it doesn’t claim that one thing is causing the change in the other.

For example, you will likely notice higher exam scores when you increase your study time. You can recognize an association between your study time and exam scores in this scenario.

Your hypothesis acknowledges a relationship between the two variables—your study time and exam scores—without asserting that increased study time directly causes higher exam scores. You need to consider that other factors, like motivation or learning style, could affect the observed association.

08. Causal Hypothesis

A causal hypothesis proposes a cause-and-effect relationship between two variables. It suggests that changes in one variable directly cause changes in another variable.

For example, when you increase your study time, you experience higher exam scores. This hypothesis suggests a direct cause-and-effect relationship, indicating that the more time you spend studying, the higher your exam scores. It assumes that changes in your study time directly influence changes in your exam performance.

09. Empirical Hypothesis

An empirical hypothesis is a statement based on things we can see and measure. It comes from direct observation or experiments and can be tested with real-world evidence. If an experiment proves a theory, it supports the idea and shows it’s not just a guess. This makes the statement more reliable than a wild guess.

For example, if you increase the dosage of a certain medication, you might observe a quicker recovery time for patients. Imagine you’re in charge of a clinical trial. In this trial, patients are given varying dosages of the medication, and you measure and compare their recovery times. This allows you to directly see the effects of different dosages on how fast patients recover.

This way, you can create a research hypothesis: “Increasing the dosage of a certain medication will lead to a faster recovery time for patients.”

10. Statistical Hypothesis

A statistical hypothesis is a statement or assumption about a population parameter that is the subject of an investigation. It serves as the basis for statistical analysis and testing. It is often tested using statistical methods to draw inferences about the larger population.

In a hypothesis test, statistical evidence is collected to either reject the null hypothesis in favor of the alternative hypothesis or fail to reject the null hypothesis due to insufficient evidence.

For example, let’s say you’re testing a new medicine. Your hypothesis could be that the medicine doesn’t really help patients get better. So, you collect data and use statistics to see if your guess is right or if the medicine actually makes a difference.

If the data strongly shows that the medicine does help, you say your guess was wrong, and the medicine does make a difference. But if the proof isn’t strong enough, you can stick with your original guess because you didn’t get enough evidence to change your mind.

How to Develop a Research Hypotheses?

Step 1: identify your research problem or topic..

Define the area of interest or the problem you want to investigate. Make sure it’s clear and well-defined.

Start by asking a question about your chosen topic. Consider the limitations of your research and create a straightforward problem related to your topic. Once you’ve done that, you can develop and test a hypothesis with evidence.

Step 2: Conduct a literature review

Review existing literature related to your research problem. This will help you understand the current state of knowledge in the field, identify gaps, and build a foundation for your hypothesis. Consider the following questions:

  • What existing research has been conducted on your chosen topic?
  • Are there any gaps or unanswered questions in the current literature?
  • How will the existing literature contribute to the foundation of your research?

Step 3: Formulate your research question

Based on your literature review, create a specific and concise research question that addresses your identified problem. Your research question should be clear, focused, and relevant to your field of study.

Step 4: Identify variables

Determine the key variables involved in your research question. Variables are the factors or phenomena that you will study and manipulate to test your hypothesis.

  • Independent Variable: The variable you manipulate or control.
  • Dependent Variable: The variable you measure to observe the effect of the independent variable.

Step 5: State the Null hypothesis

The null hypothesis is a statement that there is no significant difference or effect. It serves as a baseline for comparison with the alternative hypothesis.

Step 6: Select appropriate methods for testing the hypothesis

Choose research methods that align with your study objectives, such as experiments, surveys, or observational studies. The selected methods enable you to test your research hypothesis effectively.

Creating a research hypothesis usually takes more than one try. Expect to make changes as you collect data. It’s normal to test and say no to a few hypotheses before you find the right answer to your research question.

Testing and Evaluating Hypotheses

Testing hypotheses is a really important part of research. It’s like the practical side of things. Here, real-world evidence will help you determine how different things are connected. Let’s explore the main steps in hypothesis testing:

  • State your research hypothesis.

Before testing, clearly articulate your research hypothesis. This involves framing both a null hypothesis, suggesting no significant effect or relationship, and an alternative hypothesis, proposing the expected outcome.

  • Collect data strategically.

Plan how you will gather information in a way that fits your study. Make sure your data collection method matches the things you’re studying.

Whether through surveys, observations, or experiments, this step demands precision and adherence to the established methodology. The quality of data collected directly influences the credibility of study outcomes.

  • Perform an appropriate statistical test.

Choose a statistical test that aligns with the nature of your data and the hypotheses being tested. Whether it’s a t-test, chi-square test, ANOVA, or regression analysis, selecting the right statistical tool is paramount for accurate and reliable results.

  • Decide if your idea was right or wrong.

Following the statistical analysis, evaluate the results in the context of your null hypothesis. You need to decide if you should reject your null hypothesis or not.

  • Share what you found.

When discussing what you found in your research, be clear and organized. Say whether your idea was supported or not, and talk about what your results mean. Also, mention any limits to your study and suggest ideas for future research.

The Role of QuestionPro to Develop a Good Research Hypothesis

QuestionPro is a survey and research platform that provides tools for creating, distributing, and analyzing surveys. It plays a crucial role in the research process, especially when you’re in the initial stages of hypothesis development. Here’s how QuestionPro can help you to develop a good research hypothesis:

  • Survey design and data collection: You can use the platform to create targeted questions that help you gather relevant data.
  • Exploratory research: Through surveys and feedback mechanisms on QuestionPro, you can conduct exploratory research to understand the landscape of a particular subject.
  • Literature review and background research: QuestionPro surveys can collect sample population opinions, experiences, and preferences. This data and a thorough literature evaluation can help you generate a well-grounded hypothesis by improving your research knowledge.
  • Identifying variables: Using targeted survey questions, you can identify relevant variables related to their research topic.
  • Testing assumptions: You can use surveys to informally test certain assumptions or hypotheses before formalizing a research hypothesis.
  • Data analysis tools: QuestionPro provides tools for analyzing survey data. You can use these tools to identify the collected data’s patterns, correlations, or trends.
  • Refining your hypotheses: As you collect data through QuestionPro, you can adjust your hypotheses based on the real-world responses you receive.

A research hypothesis is like a guide for researchers in science. It’s a well-thought-out idea that has been thoroughly tested. This idea is crucial as researchers can explore different fields, such as medicine, social sciences, and natural sciences. The research hypothesis links theories to real-world evidence and gives researchers a clear path to explore and make discoveries.

QuestionPro Research Suite is a helpful tool for researchers. It makes creating surveys, collecting data, and analyzing information easily. It supports all kinds of research, from exploring new ideas to forming hypotheses. With a focus on using data, it helps researchers do their best work.

Are you interested in learning more about QuestionPro Research Suite? Take advantage of QuestionPro’s free trial to get an initial look at its capabilities and realize the full potential of your research efforts.

LEARN MORE         FREE TRIAL

MORE LIKE THIS

Experimental vs Observational Studies: Differences & Examples

Experimental vs Observational Studies: Differences & Examples

Sep 5, 2024

Interactive forms

Interactive Forms: Key Features, Benefits, Uses + Design Tips

Sep 4, 2024

closed-loop management

Closed-Loop Management: The Key to Customer Centricity

Sep 3, 2024

Net Trust Score

Net Trust Score: Tool for Measuring Trust in Organization

Sep 2, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence

Research Hypothesis In Psychology: Types, & Examples

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

A research hypothesis, in its plural form “hypotheses,” is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method .

Hypotheses connect theory to data and guide the research process towards expanding scientific understanding

Some key points about hypotheses:

  • A hypothesis expresses an expected pattern or relationship. It connects the variables under investigation.
  • It is stated in clear, precise terms before any data collection or analysis occurs. This makes the hypothesis testable.
  • A hypothesis must be falsifiable. It should be possible, even if unlikely in practice, to collect data that disconfirms rather than supports the hypothesis.
  • Hypotheses guide research. Scientists design studies to explicitly evaluate hypotheses about how nature works.
  • For a hypothesis to be valid, it must be testable against empirical evidence. The evidence can then confirm or disprove the testable predictions.
  • Hypotheses are informed by background knowledge and observation, but go beyond what is already known to propose an explanation of how or why something occurs.
Predictions typically arise from a thorough knowledge of the research literature, curiosity about real-world problems or implications, and integrating this to advance theory. They build on existing literature while providing new insight.

Types of Research Hypotheses

Alternative hypothesis.

The research hypothesis is often called the alternative or experimental hypothesis in experimental research.

It typically suggests a potential relationship between two key variables: the independent variable, which the researcher manipulates, and the dependent variable, which is measured based on those changes.

The alternative hypothesis states a relationship exists between the two variables being studied (one variable affects the other).

A hypothesis is a testable statement or prediction about the relationship between two or more variables. It is a key component of the scientific method. Some key points about hypotheses:

  • Important hypotheses lead to predictions that can be tested empirically. The evidence can then confirm or disprove the testable predictions.

In summary, a hypothesis is a precise, testable statement of what researchers expect to happen in a study and why. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

An experimental hypothesis predicts what change(s) will occur in the dependent variable when the independent variable is manipulated.

It states that the results are not due to chance and are significant in supporting the theory being investigated.

The alternative hypothesis can be directional, indicating a specific direction of the effect, or non-directional, suggesting a difference without specifying its nature. It’s what researchers aim to support or demonstrate through their study.

Null Hypothesis

The null hypothesis states no relationship exists between the two variables being studied (one variable does not affect the other). There will be no changes in the dependent variable due to manipulating the independent variable.

It states results are due to chance and are not significant in supporting the idea being investigated.

The null hypothesis, positing no effect or relationship, is a foundational contrast to the research hypothesis in scientific inquiry. It establishes a baseline for statistical testing, promoting objectivity by initiating research from a neutral stance.

Many statistical methods are tailored to test the null hypothesis, determining the likelihood of observed results if no true effect exists.

This dual-hypothesis approach provides clarity, ensuring that research intentions are explicit, and fosters consistency across scientific studies, enhancing the standardization and interpretability of research outcomes.

Nondirectional Hypothesis

A non-directional hypothesis, also known as a two-tailed hypothesis, predicts that there is a difference or relationship between two variables but does not specify the direction of this relationship.

It merely indicates that a change or effect will occur without predicting which group will have higher or lower values.

For example, “There is a difference in performance between Group A and Group B” is a non-directional hypothesis.

Directional Hypothesis

A directional (one-tailed) hypothesis predicts the nature of the effect of the independent variable on the dependent variable. It predicts in which direction the change will take place. (i.e., greater, smaller, less, more)

It specifies whether one variable is greater, lesser, or different from another, rather than just indicating that there’s a difference without specifying its nature.

For example, “Exercise increases weight loss” is a directional hypothesis.

hypothesis

Falsifiability

The Falsification Principle, proposed by Karl Popper , is a way of demarcating science from non-science. It suggests that for a theory or hypothesis to be considered scientific, it must be testable and irrefutable.

Falsifiability emphasizes that scientific claims shouldn’t just be confirmable but should also have the potential to be proven wrong.

It means that there should exist some potential evidence or experiment that could prove the proposition false.

However many confirming instances exist for a theory, it only takes one counter observation to falsify it. For example, the hypothesis that “all swans are white,” can be falsified by observing a black swan.

For Popper, science should attempt to disprove a theory rather than attempt to continually provide evidence to support a research hypothesis.

Can a Hypothesis be Proven?

Hypotheses make probabilistic predictions. They state the expected outcome if a particular relationship exists. However, a study result supporting a hypothesis does not definitively prove it is true.

All studies have limitations. There may be unknown confounding factors or issues that limit the certainty of conclusions. Additional studies may yield different results.

In science, hypotheses can realistically only be supported with some degree of confidence, not proven. The process of science is to incrementally accumulate evidence for and against hypothesized relationships in an ongoing pursuit of better models and explanations that best fit the empirical data. But hypotheses remain open to revision and rejection if that is where the evidence leads.
  • Disproving a hypothesis is definitive. Solid disconfirmatory evidence will falsify a hypothesis and require altering or discarding it based on the evidence.
  • However, confirming evidence is always open to revision. Other explanations may account for the same results, and additional or contradictory evidence may emerge over time.

We can never 100% prove the alternative hypothesis. Instead, we see if we can disprove, or reject the null hypothesis.

If we reject the null hypothesis, this doesn’t mean that our alternative hypothesis is correct but does support the alternative/experimental hypothesis.

Upon analysis of the results, an alternative hypothesis can be rejected or supported, but it can never be proven to be correct. We must avoid any reference to results proving a theory as this implies 100% certainty, and there is always a chance that evidence may exist which could refute a theory.

How to Write a Hypothesis

  • Identify variables . The researcher manipulates the independent variable and the dependent variable is the measured outcome.
  • Operationalized the variables being investigated . Operationalization of a hypothesis refers to the process of making the variables physically measurable or testable, e.g. if you are about to study aggression, you might count the number of punches given by participants.
  • Decide on a direction for your prediction . If there is evidence in the literature to support a specific effect of the independent variable on the dependent variable, write a directional (one-tailed) hypothesis. If there are limited or ambiguous findings in the literature regarding the effect of the independent variable on the dependent variable, write a non-directional (two-tailed) hypothesis.
  • Make it Testable : Ensure your hypothesis can be tested through experimentation or observation. It should be possible to prove it false (principle of falsifiability).
  • Clear & concise language . A strong hypothesis is concise (typically one to two sentences long), and formulated using clear and straightforward language, ensuring it’s easily understood and testable.

Consider a hypothesis many teachers might subscribe to: students work better on Monday morning than on Friday afternoon (IV=Day, DV= Standard of work).

Now, if we decide to study this by giving the same group of students a lesson on a Monday morning and a Friday afternoon and then measuring their immediate recall of the material covered in each session, we would end up with the following:

  • The alternative hypothesis states that students will recall significantly more information on a Monday morning than on a Friday afternoon.
  • The null hypothesis states that there will be no significant difference in the amount recalled on a Monday morning compared to a Friday afternoon. Any difference will be due to chance or confounding factors.

More Examples

  • Memory : Participants exposed to classical music during study sessions will recall more items from a list than those who studied in silence.
  • Social Psychology : Individuals who frequently engage in social media use will report higher levels of perceived social isolation compared to those who use it infrequently.
  • Developmental Psychology : Children who engage in regular imaginative play have better problem-solving skills than those who don’t.
  • Clinical Psychology : Cognitive-behavioral therapy will be more effective in reducing symptoms of anxiety over a 6-month period compared to traditional talk therapy.
  • Cognitive Psychology : Individuals who multitask between various electronic devices will have shorter attention spans on focused tasks than those who single-task.
  • Health Psychology : Patients who practice mindfulness meditation will experience lower levels of chronic pain compared to those who don’t meditate.
  • Organizational Psychology : Employees in open-plan offices will report higher levels of stress than those in private offices.
  • Behavioral Psychology : Rats rewarded with food after pressing a lever will press it more frequently than rats who receive no reward.

Print Friendly, PDF & Email

forms of hypothesis in research methodology

What Is A Research (Scientific) Hypothesis? A plain-language explainer + examples

By:  Derek Jansen (MBA)  | Reviewed By: Dr Eunice Rautenbach | June 2020

If you’re new to the world of research, or it’s your first time writing a dissertation or thesis, you’re probably noticing that the words “research hypothesis” and “scientific hypothesis” are used quite a bit, and you’re wondering what they mean in a research context .

“Hypothesis” is one of those words that people use loosely, thinking they understand what it means. However, it has a very specific meaning within academic research. So, it’s important to understand the exact meaning before you start hypothesizing. 

Research Hypothesis 101

  • What is a hypothesis ?
  • What is a research hypothesis (scientific hypothesis)?
  • Requirements for a research hypothesis
  • Definition of a research hypothesis
  • The null hypothesis

What is a hypothesis?

Let’s start with the general definition of a hypothesis (not a research hypothesis or scientific hypothesis), according to the Cambridge Dictionary:

Hypothesis: an idea or explanation for something that is based on known facts but has not yet been proved.

In other words, it’s a statement that provides an explanation for why or how something works, based on facts (or some reasonable assumptions), but that has not yet been specifically tested . For example, a hypothesis might look something like this:

Hypothesis: sleep impacts academic performance.

This statement predicts that academic performance will be influenced by the amount and/or quality of sleep a student engages in – sounds reasonable, right? It’s based on reasonable assumptions , underpinned by what we currently know about sleep and health (from the existing literature). So, loosely speaking, we could call it a hypothesis, at least by the dictionary definition.

But that’s not good enough…

Unfortunately, that’s not quite sophisticated enough to describe a research hypothesis (also sometimes called a scientific hypothesis), and it wouldn’t be acceptable in a dissertation, thesis or research paper . In the world of academic research, a statement needs a few more criteria to constitute a true research hypothesis .

What is a research hypothesis?

A research hypothesis (also called a scientific hypothesis) is a statement about the expected outcome of a study (for example, a dissertation or thesis). To constitute a quality hypothesis, the statement needs to have three attributes – specificity , clarity and testability .

Let’s take a look at these more closely.

Need a helping hand?

forms of hypothesis in research methodology

Hypothesis Essential #1: Specificity & Clarity

A good research hypothesis needs to be extremely clear and articulate about both what’ s being assessed (who or what variables are involved ) and the expected outcome (for example, a difference between groups, a relationship between variables, etc.).

Let’s stick with our sleepy students example and look at how this statement could be more specific and clear.

Hypothesis: Students who sleep at least 8 hours per night will, on average, achieve higher grades in standardised tests than students who sleep less than 8 hours a night.

As you can see, the statement is very specific as it identifies the variables involved (sleep hours and test grades), the parties involved (two groups of students), as well as the predicted relationship type (a positive relationship). There’s no ambiguity or uncertainty about who or what is involved in the statement, and the expected outcome is clear.

Contrast that to the original hypothesis we looked at – “Sleep impacts academic performance” – and you can see the difference. “Sleep” and “academic performance” are both comparatively vague , and there’s no indication of what the expected relationship direction is (more sleep or less sleep). As you can see, specificity and clarity are key.

A good research hypothesis needs to be very clear about what’s being assessed and very specific about the expected outcome.

Hypothesis Essential #2: Testability (Provability)

A statement must be testable to qualify as a research hypothesis. In other words, there needs to be a way to prove (or disprove) the statement. If it’s not testable, it’s not a hypothesis – simple as that.

For example, consider the hypothesis we mentioned earlier:

Hypothesis: Students who sleep at least 8 hours per night will, on average, achieve higher grades in standardised tests than students who sleep less than 8 hours a night.  

We could test this statement by undertaking a quantitative study involving two groups of students, one that gets 8 or more hours of sleep per night for a fixed period, and one that gets less. We could then compare the standardised test results for both groups to see if there’s a statistically significant difference. 

Again, if you compare this to the original hypothesis we looked at – “Sleep impacts academic performance” – you can see that it would be quite difficult to test that statement, primarily because it isn’t specific enough. How much sleep? By who? What type of academic performance?

So, remember the mantra – if you can’t test it, it’s not a hypothesis 🙂

A good research hypothesis must be testable. In other words, you must able to collect observable data in a scientifically rigorous fashion to test it.

Defining A Research Hypothesis

You’re still with us? Great! Let’s recap and pin down a clear definition of a hypothesis.

A research hypothesis (or scientific hypothesis) is a statement about an expected relationship between variables, or explanation of an occurrence, that is clear, specific and testable.

So, when you write up hypotheses for your dissertation or thesis, make sure that they meet all these criteria. If you do, you’ll not only have rock-solid hypotheses but you’ll also ensure a clear focus for your entire research project.

What about the null hypothesis?

You may have also heard the terms null hypothesis , alternative hypothesis, or H-zero thrown around. At a simple level, the null hypothesis is the counter-proposal to the original hypothesis.

For example, if the hypothesis predicts that there is a relationship between two variables (for example, sleep and academic performance), the null hypothesis would predict that there is no relationship between those variables.

At a more technical level, the null hypothesis proposes that no statistical significance exists in a set of given observations and that any differences are due to chance alone.

And there you have it – hypotheses in a nutshell. 

If you have any questions, be sure to leave a comment below and we’ll do our best to help you. If you need hands-on help developing and testing your hypotheses, consider our private coaching service , where we hold your hand through the research journey.

Research Methodology Bootcamp

17 Comments

Lynnet Chikwaikwai

Very useful information. I benefit more from getting more information in this regard.

Dr. WuodArek

Very great insight,educative and informative. Please give meet deep critics on many research data of public international Law like human rights, environment, natural resources, law of the sea etc

Afshin

In a book I read a distinction is made between null, research, and alternative hypothesis. As far as I understand, alternative and research hypotheses are the same. Can you please elaborate? Best Afshin

GANDI Benjamin

This is a self explanatory, easy going site. I will recommend this to my friends and colleagues.

Lucile Dossou-Yovo

Very good definition. How can I cite your definition in my thesis? Thank you. Is nul hypothesis compulsory in a research?

Pereria

It’s a counter-proposal to be proven as a rejection

Egya Salihu

Please what is the difference between alternate hypothesis and research hypothesis?

Mulugeta Tefera

It is a very good explanation. However, it limits hypotheses to statistically tasteable ideas. What about for qualitative researches or other researches that involve quantitative data that don’t need statistical tests?

Derek Jansen

In qualitative research, one typically uses propositions, not hypotheses.

Samia

could you please elaborate it more

Patricia Nyawir

I’ve benefited greatly from these notes, thank you.

Hopeson Khondiwa

This is very helpful

Dr. Andarge

well articulated ideas are presented here, thank you for being reliable sources of information

TAUNO

Excellent. Thanks for being clear and sound about the research methodology and hypothesis (quantitative research)

I have only a simple question regarding the null hypothesis. – Is the null hypothesis (Ho) known as the reversible hypothesis of the alternative hypothesis (H1? – How to test it in academic research?

Tesfaye Negesa Urge

this is very important note help me much more

Elton Cleckley

Hi” best wishes to you and your very nice blog” 

Trackbacks/Pingbacks

  • What Is Research Methodology? Simple Definition (With Examples) - Grad Coach - […] Contrasted to this, a quantitative methodology is typically used when the research aims and objectives are confirmatory in nature. For example,…

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

logo image missing

  • > Machine Learning
  • > Statistics

What is Hypothesis Testing? Types and Methods

  • Soumyaa Rawat
  • Jul 23, 2021

What is Hypothesis Testing? Types and Methods title banner

Hypothesis Testing  

Hypothesis testing is the act of testing a hypothesis or a supposition in relation to a statistical parameter. Analysts implement hypothesis testing in order to test if a hypothesis is plausible or not. 

In data science and statistics , hypothesis testing is an important step as it involves the verification of an assumption that could help develop a statistical parameter. For instance, a researcher establishes a hypothesis assuming that the average of all odd numbers is an even number. 

In order to find the plausibility of this hypothesis, the researcher will have to test the hypothesis using hypothesis testing methods. Unlike a hypothesis that is ‘supposed’ to stand true on the basis of little or no evidence, hypothesis testing is required to have plausible evidence in order to establish that a statistical hypothesis is true. 

Perhaps this is where statistics play an important role. A number of components are involved in this process. But before understanding the process involved in hypothesis testing in research methodology, we shall first understand the types of hypotheses that are involved in the process. Let us get started! 

Types of Hypotheses

In data sampling, different types of hypothesis are involved in finding whether the tested samples test positive for a hypothesis or not. In this segment, we shall discover the different types of hypotheses and understand the role they play in hypothesis testing.

Alternative Hypothesis

Alternative Hypothesis (H1) or the research hypothesis states that there is a relationship between two variables (where one variable affects the other). The alternative hypothesis is the main driving force for hypothesis testing. 

It implies that the two variables are related to each other and the relationship that exists between them is not due to chance or coincidence. 

When the process of hypothesis testing is carried out, the alternative hypothesis is the main subject of the testing process. The analyst intends to test the alternative hypothesis and verifies its plausibility.

Null Hypothesis

The Null Hypothesis (H0) aims to nullify the alternative hypothesis by implying that there exists no relation between two variables in statistics. It states that the effect of one variable on the other is solely due to chance and no empirical cause lies behind it. 

The null hypothesis is established alongside the alternative hypothesis and is recognized as important as the latter. In hypothesis testing, the null hypothesis has a major role to play as it influences the testing against the alternative hypothesis. 

(Must read: What is ANOVA test? )

Non-Directional Hypothesis

The Non-directional hypothesis states that the relation between two variables has no direction. 

Simply put, it asserts that there exists a relation between two variables, but does not recognize the direction of effect, whether variable A affects variable B or vice versa. 

Directional Hypothesis

The Directional hypothesis, on the other hand, asserts the direction of effect of the relationship that exists between two variables. 

Herein, the hypothesis clearly states that variable A affects variable B, or vice versa. 

Statistical Hypothesis

A statistical hypothesis is a hypothesis that can be verified to be plausible on the basis of statistics. 

By using data sampling and statistical knowledge, one can determine the plausibility of a statistical hypothesis and find out if it stands true or not. 

(Related blog: z-test vs t-test )

Performing Hypothesis Testing  

Now that we have understood the types of hypotheses and the role they play in hypothesis testing, let us now move on to understand the process in a better manner. 

In hypothesis testing, a researcher is first required to establish two hypotheses - alternative hypothesis and null hypothesis in order to begin with the procedure. 

To establish these two hypotheses, one is required to study data samples, find a plausible pattern among the samples, and pen down a statistical hypothesis that they wish to test. 

A random population of samples can be drawn, to begin with hypothesis testing. Among the two hypotheses, alternative and null, only one can be verified to be true. Perhaps the presence of both hypotheses is required to make the process successful. 

At the end of the hypothesis testing procedure, either of the hypotheses will be rejected and the other one will be supported. Even though one of the two hypotheses turns out to be true, no hypothesis can ever be verified 100%. 

(Read also: Types of data sampling techniques )

Therefore, a hypothesis can only be supported based on the statistical samples and verified data. Here is a step-by-step guide for hypothesis testing.

Establish the hypotheses

First things first, one is required to establish two hypotheses - alternative and null, that will set the foundation for hypothesis testing. 

These hypotheses initiate the testing process that involves the researcher working on data samples in order to either support the alternative hypothesis or the null hypothesis. 

Generate a testing plan

Once the hypotheses have been formulated, it is now time to generate a testing plan. A testing plan or an analysis plan involves the accumulation of data samples, determining which statistic is to be considered and laying out the sample size. 

All these factors are very important while one is working on hypothesis testing.

Analyze data samples

As soon as a testing plan is ready, it is time to move on to the analysis part. Analysis of data samples involves configuring statistical values of samples, drawing them together, and deriving a pattern out of these samples. 

While analyzing the data samples, a researcher needs to determine a set of things -

Significance Level - The level of significance in hypothesis testing indicates if a statistical result could have significance if the null hypothesis stands to be true.

Testing Method - The testing method involves a type of sampling-distribution and a test statistic that leads to hypothesis testing. There are a number of testing methods that can assist in the analysis of data samples. 

Test statistic - Test statistic is a numerical summary of a data set that can be used to perform hypothesis testing.

P-value - The P-value interpretation is the probability of finding a sample statistic to be as extreme as the test statistic, indicating the plausibility of the null hypothesis. 

Infer the results

The analysis of data samples leads to the inference of results that establishes whether the alternative hypothesis stands true or not. When the P-value is less than the significance level, the null hypothesis is rejected and the alternative hypothesis turns out to be plausible. 

Methods of Hypothesis Testing

As we have already looked into different aspects of hypothesis testing, we shall now look into the different methods of hypothesis testing. All in all, there are 2 most common types of hypothesis testing methods. They are as follows -

Frequentist Hypothesis Testing

The frequentist hypothesis or the traditional approach to hypothesis testing is a hypothesis testing method that aims on making assumptions by considering current data. 

The supposed truths and assumptions are based on the current data and a set of 2 hypotheses are formulated. A very popular subtype of the frequentist approach is the Null Hypothesis Significance Testing (NHST). 

The NHST approach (involving the null and alternative hypothesis) has been one of the most sought-after methods of hypothesis testing in the field of statistics ever since its inception in the mid-1950s. 

Bayesian Hypothesis Testing

A much unconventional and modern method of hypothesis testing, the Bayesian Hypothesis Testing claims to test a particular hypothesis in accordance with the past data samples, known as prior probability, and current data that lead to the plausibility of a hypothesis. 

The result obtained indicates the posterior probability of the hypothesis. In this method, the researcher relies on ‘prior probability and posterior probability’ to conduct hypothesis testing on hand. 

On the basis of this prior probability, the Bayesian approach tests a hypothesis to be true or false. The Bayes factor, a major component of this method, indicates the likelihood ratio among the null hypothesis and the alternative hypothesis. 

The Bayes factor is the indicator of the plausibility of either of the two hypotheses that are established for hypothesis testing.  

(Also read - Introduction to Bayesian Statistics ) 

To conclude, hypothesis testing, a way to verify the plausibility of a supposed assumption can be done through different methods - the Bayesian approach or the Frequentist approach. 

Although the Bayesian approach relies on the prior probability of data samples, the frequentist approach assumes without a probability. A number of elements involved in hypothesis testing are - significance level, p-level, test statistic, and method of hypothesis testing. 

(Also read: Introduction to probability distributions )

A significant way to determine whether a hypothesis stands true or not is to verify the data samples and identify the plausible hypothesis among the null hypothesis and alternative hypothesis. 

Share Blog :

forms of hypothesis in research methodology

Be a part of our Instagram community

Trending blogs

5 Factors Influencing Consumer Behavior

Elasticity of Demand and its Types

An Overview of Descriptive Analysis

What is PESTLE Analysis? Everything you need to know about it

What is Managerial Economics? Definition, Types, Nature, Principles, and Scope

5 Factors Affecting the Price Elasticity of Demand (PED)

6 Major Branches of Artificial Intelligence (AI)

Scope of Managerial Economics

Dijkstra’s Algorithm: The Shortest Path Algorithm

Different Types of Research Methods

Latest Comments

forms of hypothesis in research methodology

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • BMC Med Res Methodol

Logo of bmcmrm

A tutorial on methodological studies: the what, when, how and why

Lawrence mbuagbaw.

1 Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON Canada

2 Biostatistics Unit/FSORC, 50 Charlton Avenue East, St Joseph’s Healthcare—Hamilton, 3rd Floor Martha Wing, Room H321, Hamilton, Ontario L8N 4A6 Canada

3 Centre for the Development of Best Practices in Health, Yaoundé, Cameroon

Daeria O. Lawson

Livia puljak.

4 Center for Evidence-Based Medicine and Health Care, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia

David B. Allison

5 Department of Epidemiology and Biostatistics, School of Public Health – Bloomington, Indiana University, Bloomington, IN 47405 USA

Lehana Thabane

6 Departments of Paediatrics and Anaesthesia, McMaster University, Hamilton, ON Canada

7 Centre for Evaluation of Medicine, St. Joseph’s Healthcare-Hamilton, Hamilton, ON Canada

8 Population Health Research Institute, Hamilton Health Sciences, Hamilton, ON Canada

Associated Data

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Methodological studies – studies that evaluate the design, analysis or reporting of other research-related reports – play an important role in health research. They help to highlight issues in the conduct of research with the aim of improving health research methodology, and ultimately reducing research waste.

We provide an overview of some of the key aspects of methodological studies such as what they are, and when, how and why they are done. We adopt a “frequently asked questions” format to facilitate reading this paper and provide multiple examples to help guide researchers interested in conducting methodological studies. Some of the topics addressed include: is it necessary to publish a study protocol? How to select relevant research reports and databases for a methodological study? What approaches to data extraction and statistical analysis should be considered when conducting a methodological study? What are potential threats to validity and is there a way to appraise the quality of methodological studies?

Appropriate reflection and application of basic principles of epidemiology and biostatistics are required in the design and analysis of methodological studies. This paper provides an introduction for further discussion about the conduct of methodological studies.

The field of meta-research (or research-on-research) has proliferated in recent years in response to issues with research quality and conduct [ 1 – 3 ]. As the name suggests, this field targets issues with research design, conduct, analysis and reporting. Various types of research reports are often examined as the unit of analysis in these studies (e.g. abstracts, full manuscripts, trial registry entries). Like many other novel fields of research, meta-research has seen a proliferation of use before the development of reporting guidance. For example, this was the case with randomized trials for which risk of bias tools and reporting guidelines were only developed much later – after many trials had been published and noted to have limitations [ 4 , 5 ]; and for systematic reviews as well [ 6 – 8 ]. However, in the absence of formal guidance, studies that report on research differ substantially in how they are named, conducted and reported [ 9 , 10 ]. This creates challenges in identifying, summarizing and comparing them. In this tutorial paper, we will use the term methodological study to refer to any study that reports on the design, conduct, analysis or reporting of primary or secondary research-related reports (such as trial registry entries and conference abstracts).

In the past 10 years, there has been an increase in the use of terms related to methodological studies (based on records retrieved with a keyword search [in the title and abstract] for “methodological review” and “meta-epidemiological study” in PubMed up to December 2019), suggesting that these studies may be appearing more frequently in the literature. See Fig.  1 .

An external file that holds a picture, illustration, etc.
Object name is 12874_2020_1107_Fig1_HTML.jpg

Trends in the number studies that mention “methodological review” or “meta-

epidemiological study” in PubMed.

The methods used in many methodological studies have been borrowed from systematic and scoping reviews. This practice has influenced the direction of the field, with many methodological studies including searches of electronic databases, screening of records, duplicate data extraction and assessments of risk of bias in the included studies. However, the research questions posed in methodological studies do not always require the approaches listed above, and guidance is needed on when and how to apply these methods to a methodological study. Even though methodological studies can be conducted on qualitative or mixed methods research, this paper focuses on and draws examples exclusively from quantitative research.

The objectives of this paper are to provide some insights on how to conduct methodological studies so that there is greater consistency between the research questions posed, and the design, analysis and reporting of findings. We provide multiple examples to illustrate concepts and a proposed framework for categorizing methodological studies in quantitative research.

What is a methodological study?

Any study that describes or analyzes methods (design, conduct, analysis or reporting) in published (or unpublished) literature is a methodological study. Consequently, the scope of methodological studies is quite extensive and includes, but is not limited to, topics as diverse as: research question formulation [ 11 ]; adherence to reporting guidelines [ 12 – 14 ] and consistency in reporting [ 15 ]; approaches to study analysis [ 16 ]; investigating the credibility of analyses [ 17 ]; and studies that synthesize these methodological studies [ 18 ]. While the nomenclature of methodological studies is not uniform, the intents and purposes of these studies remain fairly consistent – to describe or analyze methods in primary or secondary studies. As such, methodological studies may also be classified as a subtype of observational studies.

Parallel to this are experimental studies that compare different methods. Even though they play an important role in informing optimal research methods, experimental methodological studies are beyond the scope of this paper. Examples of such studies include the randomized trials by Buscemi et al., comparing single data extraction to double data extraction [ 19 ], and Carrasco-Labra et al., comparing approaches to presenting findings in Grading of Recommendations, Assessment, Development and Evaluations (GRADE) summary of findings tables [ 20 ]. In these studies, the unit of analysis is the person or groups of individuals applying the methods. We also direct readers to the Studies Within a Trial (SWAT) and Studies Within a Review (SWAR) programme operated through the Hub for Trials Methodology Research, for further reading as a potential useful resource for these types of experimental studies [ 21 ]. Lastly, this paper is not meant to inform the conduct of research using computational simulation and mathematical modeling for which some guidance already exists [ 22 ], or studies on the development of methods using consensus-based approaches.

When should we conduct a methodological study?

Methodological studies occupy a unique niche in health research that allows them to inform methodological advances. Methodological studies should also be conducted as pre-cursors to reporting guideline development, as they provide an opportunity to understand current practices, and help to identify the need for guidance and gaps in methodological or reporting quality. For example, the development of the popular Preferred Reporting Items of Systematic reviews and Meta-Analyses (PRISMA) guidelines were preceded by methodological studies identifying poor reporting practices [ 23 , 24 ]. In these instances, after the reporting guidelines are published, methodological studies can also be used to monitor uptake of the guidelines.

These studies can also be conducted to inform the state of the art for design, analysis and reporting practices across different types of health research fields, with the aim of improving research practices, and preventing or reducing research waste. For example, Samaan et al. conducted a scoping review of adherence to different reporting guidelines in health care literature [ 18 ]. Methodological studies can also be used to determine the factors associated with reporting practices. For example, Abbade et al. investigated journal characteristics associated with the use of the Participants, Intervention, Comparison, Outcome, Timeframe (PICOT) format in framing research questions in trials of venous ulcer disease [ 11 ].

How often are methodological studies conducted?

There is no clear answer to this question. Based on a search of PubMed, the use of related terms (“methodological review” and “meta-epidemiological study”) – and therefore, the number of methodological studies – is on the rise. However, many other terms are used to describe methodological studies. There are also many studies that explore design, conduct, analysis or reporting of research reports, but that do not use any specific terms to describe or label their study design in terms of “methodology”. This diversity in nomenclature makes a census of methodological studies elusive. Appropriate terminology and key words for methodological studies are needed to facilitate improved accessibility for end-users.

Why do we conduct methodological studies?

Methodological studies provide information on the design, conduct, analysis or reporting of primary and secondary research and can be used to appraise quality, quantity, completeness, accuracy and consistency of health research. These issues can be explored in specific fields, journals, databases, geographical regions and time periods. For example, Areia et al. explored the quality of reporting of endoscopic diagnostic studies in gastroenterology [ 25 ]; Knol et al. investigated the reporting of p -values in baseline tables in randomized trial published in high impact journals [ 26 ]; Chen et al. describe adherence to the Consolidated Standards of Reporting Trials (CONSORT) statement in Chinese Journals [ 27 ]; and Hopewell et al. describe the effect of editors’ implementation of CONSORT guidelines on reporting of abstracts over time [ 28 ]. Methodological studies provide useful information to researchers, clinicians, editors, publishers and users of health literature. As a result, these studies have been at the cornerstone of important methodological developments in the past two decades and have informed the development of many health research guidelines including the highly cited CONSORT statement [ 5 ].

Where can we find methodological studies?

Methodological studies can be found in most common biomedical bibliographic databases (e.g. Embase, MEDLINE, PubMed, Web of Science). However, the biggest caveat is that methodological studies are hard to identify in the literature due to the wide variety of names used and the lack of comprehensive databases dedicated to them. A handful can be found in the Cochrane Library as “Cochrane Methodology Reviews”, but these studies only cover methodological issues related to systematic reviews. Previous attempts to catalogue all empirical studies of methods used in reviews were abandoned 10 years ago [ 29 ]. In other databases, a variety of search terms may be applied with different levels of sensitivity and specificity.

Some frequently asked questions about methodological studies

In this section, we have outlined responses to questions that might help inform the conduct of methodological studies.

Q: How should I select research reports for my methodological study?

A: Selection of research reports for a methodological study depends on the research question and eligibility criteria. Once a clear research question is set and the nature of literature one desires to review is known, one can then begin the selection process. Selection may begin with a broad search, especially if the eligibility criteria are not apparent. For example, a methodological study of Cochrane Reviews of HIV would not require a complex search as all eligible studies can easily be retrieved from the Cochrane Library after checking a few boxes [ 30 ]. On the other hand, a methodological study of subgroup analyses in trials of gastrointestinal oncology would require a search to find such trials, and further screening to identify trials that conducted a subgroup analysis [ 31 ].

The strategies used for identifying participants in observational studies can apply here. One may use a systematic search to identify all eligible studies. If the number of eligible studies is unmanageable, a random sample of articles can be expected to provide comparable results if it is sufficiently large [ 32 ]. For example, Wilson et al. used a random sample of trials from the Cochrane Stroke Group’s Trial Register to investigate completeness of reporting [ 33 ]. It is possible that a simple random sample would lead to underrepresentation of units (i.e. research reports) that are smaller in number. This is relevant if the investigators wish to compare multiple groups but have too few units in one group. In this case a stratified sample would help to create equal groups. For example, in a methodological study comparing Cochrane and non-Cochrane reviews, Kahale et al. drew random samples from both groups [ 34 ]. Alternatively, systematic or purposeful sampling strategies can be used and we encourage researchers to justify their selected approaches based on the study objective.

Q: How many databases should I search?

A: The number of databases one should search would depend on the approach to sampling, which can include targeting the entire “population” of interest or a sample of that population. If you are interested in including the entire target population for your research question, or drawing a random or systematic sample from it, then a comprehensive and exhaustive search for relevant articles is required. In this case, we recommend using systematic approaches for searching electronic databases (i.e. at least 2 databases with a replicable and time stamped search strategy). The results of your search will constitute a sampling frame from which eligible studies can be drawn.

Alternatively, if your approach to sampling is purposeful, then we recommend targeting the database(s) or data sources (e.g. journals, registries) that include the information you need. For example, if you are conducting a methodological study of high impact journals in plastic surgery and they are all indexed in PubMed, you likely do not need to search any other databases. You may also have a comprehensive list of all journals of interest and can approach your search using the journal names in your database search (or by accessing the journal archives directly from the journal’s website). Even though one could also search journals’ web pages directly, using a database such as PubMed has multiple advantages, such as the use of filters, so the search can be narrowed down to a certain period, or study types of interest. Furthermore, individual journals’ web sites may have different search functionalities, which do not necessarily yield a consistent output.

Q: Should I publish a protocol for my methodological study?

A: A protocol is a description of intended research methods. Currently, only protocols for clinical trials require registration [ 35 ]. Protocols for systematic reviews are encouraged but no formal recommendation exists. The scientific community welcomes the publication of protocols because they help protect against selective outcome reporting, the use of post hoc methodologies to embellish results, and to help avoid duplication of efforts [ 36 ]. While the latter two risks exist in methodological research, the negative consequences may be substantially less than for clinical outcomes. In a sample of 31 methodological studies, 7 (22.6%) referenced a published protocol [ 9 ]. In the Cochrane Library, there are 15 protocols for methodological reviews (21 July 2020). This suggests that publishing protocols for methodological studies is not uncommon.

Authors can consider publishing their study protocol in a scholarly journal as a manuscript. Advantages of such publication include obtaining peer-review feedback about the planned study, and easy retrieval by searching databases such as PubMed. The disadvantages in trying to publish protocols includes delays associated with manuscript handling and peer review, as well as costs, as few journals publish study protocols, and those journals mostly charge article-processing fees [ 37 ]. Authors who would like to make their protocol publicly available without publishing it in scholarly journals, could deposit their study protocols in publicly available repositories, such as the Open Science Framework ( https://osf.io/ ).

Q: How to appraise the quality of a methodological study?

A: To date, there is no published tool for appraising the risk of bias in a methodological study, but in principle, a methodological study could be considered as a type of observational study. Therefore, during conduct or appraisal, care should be taken to avoid the biases common in observational studies [ 38 ]. These biases include selection bias, comparability of groups, and ascertainment of exposure or outcome. In other words, to generate a representative sample, a comprehensive reproducible search may be necessary to build a sampling frame. Additionally, random sampling may be necessary to ensure that all the included research reports have the same probability of being selected, and the screening and selection processes should be transparent and reproducible. To ensure that the groups compared are similar in all characteristics, matching, random sampling or stratified sampling can be used. Statistical adjustments for between-group differences can also be applied at the analysis stage. Finally, duplicate data extraction can reduce errors in assessment of exposures or outcomes.

Q: Should I justify a sample size?

A: In all instances where one is not using the target population (i.e. the group to which inferences from the research report are directed) [ 39 ], a sample size justification is good practice. The sample size justification may take the form of a description of what is expected to be achieved with the number of articles selected, or a formal sample size estimation that outlines the number of articles required to answer the research question with a certain precision and power. Sample size justifications in methodological studies are reasonable in the following instances:

  • Comparing two groups
  • Determining a proportion, mean or another quantifier
  • Determining factors associated with an outcome using regression-based analyses

For example, El Dib et al. computed a sample size requirement for a methodological study of diagnostic strategies in randomized trials, based on a confidence interval approach [ 40 ].

Q: What should I call my study?

A: Other terms which have been used to describe/label methodological studies include “ methodological review ”, “methodological survey” , “meta-epidemiological study” , “systematic review” , “systematic survey”, “meta-research”, “research-on-research” and many others. We recommend that the study nomenclature be clear, unambiguous, informative and allow for appropriate indexing. Methodological study nomenclature that should be avoided includes “ systematic review” – as this will likely be confused with a systematic review of a clinical question. “ Systematic survey” may also lead to confusion about whether the survey was systematic (i.e. using a preplanned methodology) or a survey using “ systematic” sampling (i.e. a sampling approach using specific intervals to determine who is selected) [ 32 ]. Any of the above meanings of the words “ systematic” may be true for methodological studies and could be potentially misleading. “ Meta-epidemiological study” is ideal for indexing, but not very informative as it describes an entire field. The term “ review ” may point towards an appraisal or “review” of the design, conduct, analysis or reporting (or methodological components) of the targeted research reports, yet it has also been used to describe narrative reviews [ 41 , 42 ]. The term “ survey ” is also in line with the approaches used in many methodological studies [ 9 ], and would be indicative of the sampling procedures of this study design. However, in the absence of guidelines on nomenclature, the term “ methodological study ” is broad enough to capture most of the scenarios of such studies.

Q: Should I account for clustering in my methodological study?

A: Data from methodological studies are often clustered. For example, articles coming from a specific source may have different reporting standards (e.g. the Cochrane Library). Articles within the same journal may be similar due to editorial practices and policies, reporting requirements and endorsement of guidelines. There is emerging evidence that these are real concerns that should be accounted for in analyses [ 43 ]. Some cluster variables are described in the section: “ What variables are relevant to methodological studies?”

A variety of modelling approaches can be used to account for correlated data, including the use of marginal, fixed or mixed effects regression models with appropriate computation of standard errors [ 44 ]. For example, Kosa et al. used generalized estimation equations to account for correlation of articles within journals [ 15 ]. Not accounting for clustering could lead to incorrect p -values, unduly narrow confidence intervals, and biased estimates [ 45 ].

Q: Should I extract data in duplicate?

A: Yes. Duplicate data extraction takes more time but results in less errors [ 19 ]. Data extraction errors in turn affect the effect estimate [ 46 ], and therefore should be mitigated. Duplicate data extraction should be considered in the absence of other approaches to minimize extraction errors. However, much like systematic reviews, this area will likely see rapid new advances with machine learning and natural language processing technologies to support researchers with screening and data extraction [ 47 , 48 ]. However, experience plays an important role in the quality of extracted data and inexperienced extractors should be paired with experienced extractors [ 46 , 49 ].

Q: Should I assess the risk of bias of research reports included in my methodological study?

A : Risk of bias is most useful in determining the certainty that can be placed in the effect measure from a study. In methodological studies, risk of bias may not serve the purpose of determining the trustworthiness of results, as effect measures are often not the primary goal of methodological studies. Determining risk of bias in methodological studies is likely a practice borrowed from systematic review methodology, but whose intrinsic value is not obvious in methodological studies. When it is part of the research question, investigators often focus on one aspect of risk of bias. For example, Speich investigated how blinding was reported in surgical trials [ 50 ], and Abraha et al., investigated the application of intention-to-treat analyses in systematic reviews and trials [ 51 ].

Q: What variables are relevant to methodological studies?

A: There is empirical evidence that certain variables may inform the findings in a methodological study. We outline some of these and provide a brief overview below:

  • Country: Countries and regions differ in their research cultures, and the resources available to conduct research. Therefore, it is reasonable to believe that there may be differences in methodological features across countries. Methodological studies have reported loco-regional differences in reporting quality [ 52 , 53 ]. This may also be related to challenges non-English speakers face in publishing papers in English.
  • Authors’ expertise: The inclusion of authors with expertise in research methodology, biostatistics, and scientific writing is likely to influence the end-product. Oltean et al. found that among randomized trials in orthopaedic surgery, the use of analyses that accounted for clustering was more likely when specialists (e.g. statistician, epidemiologist or clinical trials methodologist) were included on the study team [ 54 ]. Fleming et al. found that including methodologists in the review team was associated with appropriate use of reporting guidelines [ 55 ].
  • Source of funding and conflicts of interest: Some studies have found that funded studies report better [ 56 , 57 ], while others do not [ 53 , 58 ]. The presence of funding would indicate the availability of resources deployed to ensure optimal design, conduct, analysis and reporting. However, the source of funding may introduce conflicts of interest and warrant assessment. For example, Kaiser et al. investigated the effect of industry funding on obesity or nutrition randomized trials and found that reporting quality was similar [ 59 ]. Thomas et al. looked at reporting quality of long-term weight loss trials and found that industry funded studies were better [ 60 ]. Kan et al. examined the association between industry funding and “positive trials” (trials reporting a significant intervention effect) and found that industry funding was highly predictive of a positive trial [ 61 ]. This finding is similar to that of a recent Cochrane Methodology Review by Hansen et al. [ 62 ]
  • Journal characteristics: Certain journals’ characteristics may influence the study design, analysis or reporting. Characteristics such as journal endorsement of guidelines [ 63 , 64 ], and Journal Impact Factor (JIF) have been shown to be associated with reporting [ 63 , 65 – 67 ].
  • Study size (sample size/number of sites): Some studies have shown that reporting is better in larger studies [ 53 , 56 , 58 ].
  • Year of publication: It is reasonable to assume that design, conduct, analysis and reporting of research will change over time. Many studies have demonstrated improvements in reporting over time or after the publication of reporting guidelines [ 68 , 69 ].
  • Type of intervention: In a methodological study of reporting quality of weight loss intervention studies, Thabane et al. found that trials of pharmacologic interventions were reported better than trials of non-pharmacologic interventions [ 70 ].
  • Interactions between variables: Complex interactions between the previously listed variables are possible. High income countries with more resources may be more likely to conduct larger studies and incorporate a variety of experts. Authors in certain countries may prefer certain journals, and journal endorsement of guidelines and editorial policies may change over time.

Q: Should I focus only on high impact journals?

A: Investigators may choose to investigate only high impact journals because they are more likely to influence practice and policy, or because they assume that methodological standards would be higher. However, the JIF may severely limit the scope of articles included and may skew the sample towards articles with positive findings. The generalizability and applicability of findings from a handful of journals must be examined carefully, especially since the JIF varies over time. Even among journals that are all “high impact”, variations exist in methodological standards.

Q: Can I conduct a methodological study of qualitative research?

A: Yes. Even though a lot of methodological research has been conducted in the quantitative research field, methodological studies of qualitative studies are feasible. Certain databases that catalogue qualitative research including the Cumulative Index to Nursing & Allied Health Literature (CINAHL) have defined subject headings that are specific to methodological research (e.g. “research methodology”). Alternatively, one could also conduct a qualitative methodological review; that is, use qualitative approaches to synthesize methodological issues in qualitative studies.

Q: What reporting guidelines should I use for my methodological study?

A: There is no guideline that covers the entire scope of methodological studies. One adaptation of the PRISMA guidelines has been published, which works well for studies that aim to use the entire target population of research reports [ 71 ]. However, it is not widely used (40 citations in 2 years as of 09 December 2019), and methodological studies that are designed as cross-sectional or before-after studies require a more fit-for purpose guideline. A more encompassing reporting guideline for a broad range of methodological studies is currently under development [ 72 ]. However, in the absence of formal guidance, the requirements for scientific reporting should be respected, and authors of methodological studies should focus on transparency and reproducibility.

Q: What are the potential threats to validity and how can I avoid them?

A: Methodological studies may be compromised by a lack of internal or external validity. The main threats to internal validity in methodological studies are selection and confounding bias. Investigators must ensure that the methods used to select articles does not make them differ systematically from the set of articles to which they would like to make inferences. For example, attempting to make extrapolations to all journals after analyzing high-impact journals would be misleading.

Many factors (confounders) may distort the association between the exposure and outcome if the included research reports differ with respect to these factors [ 73 ]. For example, when examining the association between source of funding and completeness of reporting, it may be necessary to account for journals that endorse the guidelines. Confounding bias can be addressed by restriction, matching and statistical adjustment [ 73 ]. Restriction appears to be the method of choice for many investigators who choose to include only high impact journals or articles in a specific field. For example, Knol et al. examined the reporting of p -values in baseline tables of high impact journals [ 26 ]. Matching is also sometimes used. In the methodological study of non-randomized interventional studies of elective ventral hernia repair, Parker et al. matched prospective studies with retrospective studies and compared reporting standards [ 74 ]. Some other methodological studies use statistical adjustments. For example, Zhang et al. used regression techniques to determine the factors associated with missing participant data in trials [ 16 ].

With regard to external validity, researchers interested in conducting methodological studies must consider how generalizable or applicable their findings are. This should tie in closely with the research question and should be explicit. For example. Findings from methodological studies on trials published in high impact cardiology journals cannot be assumed to be applicable to trials in other fields. However, investigators must ensure that their sample truly represents the target sample either by a) conducting a comprehensive and exhaustive search, or b) using an appropriate and justified, randomly selected sample of research reports.

Even applicability to high impact journals may vary based on the investigators’ definition, and over time. For example, for high impact journals in the field of general medicine, Bouwmeester et al. included the Annals of Internal Medicine (AIM), BMJ, the Journal of the American Medical Association (JAMA), Lancet, the New England Journal of Medicine (NEJM), and PLoS Medicine ( n  = 6) [ 75 ]. In contrast, the high impact journals selected in the methodological study by Schiller et al. were BMJ, JAMA, Lancet, and NEJM ( n  = 4) [ 76 ]. Another methodological study by Kosa et al. included AIM, BMJ, JAMA, Lancet and NEJM ( n  = 5). In the methodological study by Thabut et al., journals with a JIF greater than 5 were considered to be high impact. Riado Minguez et al. used first quartile journals in the Journal Citation Reports (JCR) for a specific year to determine “high impact” [ 77 ]. Ultimately, the definition of high impact will be based on the number of journals the investigators are willing to include, the year of impact and the JIF cut-off [ 78 ]. We acknowledge that the term “generalizability” may apply differently for methodological studies, especially when in many instances it is possible to include the entire target population in the sample studied.

Finally, methodological studies are not exempt from information bias which may stem from discrepancies in the included research reports [ 79 ], errors in data extraction, or inappropriate interpretation of the information extracted. Likewise, publication bias may also be a concern in methodological studies, but such concepts have not yet been explored.

A proposed framework

In order to inform discussions about methodological studies, the development of guidance for what should be reported, we have outlined some key features of methodological studies that can be used to classify them. For each of the categories outlined below, we provide an example. In our experience, the choice of approach to completing a methodological study can be informed by asking the following four questions:

  • What is the aim?

A methodological study may be focused on exploring sources of bias in primary or secondary studies (meta-bias), or how bias is analyzed. We have taken care to distinguish bias (i.e. systematic deviations from the truth irrespective of the source) from reporting quality or completeness (i.e. not adhering to a specific reporting guideline or norm). An example of where this distinction would be important is in the case of a randomized trial with no blinding. This study (depending on the nature of the intervention) would be at risk of performance bias. However, if the authors report that their study was not blinded, they would have reported adequately. In fact, some methodological studies attempt to capture both “quality of conduct” and “quality of reporting”, such as Richie et al., who reported on the risk of bias in randomized trials of pharmacy practice interventions [ 80 ]. Babic et al. investigated how risk of bias was used to inform sensitivity analyses in Cochrane reviews [ 81 ]. Further, biases related to choice of outcomes can also be explored. For example, Tan et al investigated differences in treatment effect size based on the outcome reported [ 82 ].

Methodological studies may report quality of reporting against a reporting checklist (i.e. adherence to guidelines) or against expected norms. For example, Croituro et al. report on the quality of reporting in systematic reviews published in dermatology journals based on their adherence to the PRISMA statement [ 83 ], and Khan et al. described the quality of reporting of harms in randomized controlled trials published in high impact cardiovascular journals based on the CONSORT extension for harms [ 84 ]. Other methodological studies investigate reporting of certain features of interest that may not be part of formally published checklists or guidelines. For example, Mbuagbaw et al. described how often the implications for research are elaborated using the Evidence, Participants, Intervention, Comparison, Outcome, Timeframe (EPICOT) format [ 30 ].

Sometimes investigators may be interested in how consistent reports of the same research are, as it is expected that there should be consistency between: conference abstracts and published manuscripts; manuscript abstracts and manuscript main text; and trial registration and published manuscript. For example, Rosmarakis et al. investigated consistency between conference abstracts and full text manuscripts [ 85 ].

In addition to identifying issues with reporting in primary and secondary studies, authors of methodological studies may be interested in determining the factors that are associated with certain reporting practices. Many methodological studies incorporate this, albeit as a secondary outcome. For example, Farrokhyar et al. investigated the factors associated with reporting quality in randomized trials of coronary artery bypass grafting surgery [ 53 ].

Methodological studies may also be used to describe methods or compare methods, and the factors associated with methods. Muller et al. described the methods used for systematic reviews and meta-analyses of observational studies [ 86 ].

Some methodological studies synthesize results from other methodological studies. For example, Li et al. conducted a scoping review of methodological reviews that investigated consistency between full text and abstracts in primary biomedical research [ 87 ].

Some methodological studies may investigate the use of names and terms in health research. For example, Martinic et al. investigated the definitions of systematic reviews used in overviews of systematic reviews (OSRs), meta-epidemiological studies and epidemiology textbooks [ 88 ].

In addition to the previously mentioned experimental methodological studies, there may exist other types of methodological studies not captured here.

  • 2. What is the design?

Most methodological studies are purely descriptive and report their findings as counts (percent) and means (standard deviation) or medians (interquartile range). For example, Mbuagbaw et al. described the reporting of research recommendations in Cochrane HIV systematic reviews [ 30 ]. Gohari et al. described the quality of reporting of randomized trials in diabetes in Iran [ 12 ].

Some methodological studies are analytical wherein “analytical studies identify and quantify associations, test hypotheses, identify causes and determine whether an association exists between variables, such as between an exposure and a disease.” [ 89 ] In the case of methodological studies all these investigations are possible. For example, Kosa et al. investigated the association between agreement in primary outcome from trial registry to published manuscript and study covariates. They found that larger and more recent studies were more likely to have agreement [ 15 ]. Tricco et al. compared the conclusion statements from Cochrane and non-Cochrane systematic reviews with a meta-analysis of the primary outcome and found that non-Cochrane reviews were more likely to report positive findings. These results are a test of the null hypothesis that the proportions of Cochrane and non-Cochrane reviews that report positive results are equal [ 90 ].

  • 3. What is the sampling strategy?

Methodological reviews with narrow research questions may be able to include the entire target population. For example, in the methodological study of Cochrane HIV systematic reviews, Mbuagbaw et al. included all of the available studies ( n  = 103) [ 30 ].

Many methodological studies use random samples of the target population [ 33 , 91 , 92 ]. Alternatively, purposeful sampling may be used, limiting the sample to a subset of research-related reports published within a certain time period, or in journals with a certain ranking or on a topic. Systematic sampling can also be used when random sampling may be challenging to implement.

  • 4. What is the unit of analysis?

Many methodological studies use a research report (e.g. full manuscript of study, abstract portion of the study) as the unit of analysis, and inferences can be made at the study-level. However, both published and unpublished research-related reports can be studied. These may include articles, conference abstracts, registry entries etc.

Some methodological studies report on items which may occur more than once per article. For example, Paquette et al. report on subgroup analyses in Cochrane reviews of atrial fibrillation in which 17 systematic reviews planned 56 subgroup analyses [ 93 ].

This framework is outlined in Fig.  2 .

An external file that holds a picture, illustration, etc.
Object name is 12874_2020_1107_Fig2_HTML.jpg

A proposed framework for methodological studies

Conclusions

Methodological studies have examined different aspects of reporting such as quality, completeness, consistency and adherence to reporting guidelines. As such, many of the methodological study examples cited in this tutorial are related to reporting. However, as an evolving field, the scope of research questions that can be addressed by methodological studies is expected to increase.

In this paper we have outlined the scope and purpose of methodological studies, along with examples of instances in which various approaches have been used. In the absence of formal guidance on the design, conduct, analysis and reporting of methodological studies, we have provided some advice to help make methodological studies consistent. This advice is grounded in good contemporary scientific practice. Generally, the research question should tie in with the sampling approach and planned analysis. We have also highlighted the variables that may inform findings from methodological studies. Lastly, we have provided suggestions for ways in which authors can categorize their methodological studies to inform their design and analysis.

Acknowledgements

Abbreviations.

CONSORTConsolidated Standards of Reporting Trials
EPICOTEvidence, Participants, Intervention, Comparison, Outcome, Timeframe
GRADEGrading of Recommendations, Assessment, Development and Evaluations
PICOTParticipants, Intervention, Comparison, Outcome, Timeframe
PRISMAPreferred Reporting Items of Systematic reviews and Meta-Analyses
SWARStudies Within a Review
SWATStudies Within a Trial

Authors’ contributions

LM conceived the idea and drafted the outline and paper. DOL and LT commented on the idea and draft outline. LM, LP and DOL performed literature searches and data extraction. All authors (LM, DOL, LT, LP, DBA) reviewed several draft versions of the manuscript and approved the final manuscript.

This work did not receive any dedicated funding.

Availability of data and materials

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Competing interests.

DOL, DBA, LM, LP and LT are involved in the development of a reporting guideline for methodological studies.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

forms of hypothesis in research methodology

What is Research Methodology? Definition, Types, and Examples

forms of hypothesis in research methodology

Research methodology 1,2 is a structured and scientific approach used to collect, analyze, and interpret quantitative or qualitative data to answer research questions or test hypotheses. A research methodology is like a plan for carrying out research and helps keep researchers on track by limiting the scope of the research. Several aspects must be considered before selecting an appropriate research methodology, such as research limitations and ethical concerns that may affect your research.

The research methodology section in a scientific paper describes the different methodological choices made, such as the data collection and analysis methods, and why these choices were selected. The reasons should explain why the methods chosen are the most appropriate to answer the research question. A good research methodology also helps ensure the reliability and validity of the research findings. There are three types of research methodology—quantitative, qualitative, and mixed-method, which can be chosen based on the research objectives.

What is research methodology ?

A research methodology describes the techniques and procedures used to identify and analyze information regarding a specific research topic. It is a process by which researchers design their study so that they can achieve their objectives using the selected research instruments. It includes all the important aspects of research, including research design, data collection methods, data analysis methods, and the overall framework within which the research is conducted. While these points can help you understand what is research methodology, you also need to know why it is important to pick the right methodology.

Paperpal your AI academic writing assistant

Having a good research methodology in place has the following advantages: 3

  • Helps other researchers who may want to replicate your research; the explanations will be of benefit to them.
  • You can easily answer any questions about your research if they arise at a later stage.
  • A research methodology provides a framework and guidelines for researchers to clearly define research questions, hypotheses, and objectives.
  • It helps researchers identify the most appropriate research design, sampling technique, and data collection and analysis methods.
  • A sound research methodology helps researchers ensure that their findings are valid and reliable and free from biases and errors.
  • It also helps ensure that ethical guidelines are followed while conducting research.
  • A good research methodology helps researchers in planning their research efficiently, by ensuring optimum usage of their time and resources.

Writing the methods section of a research paper? Let Paperpal help you achieve perfection  

Types of research methodology.

There are three types of research methodology based on the type of research and the data required. 1

  • Quantitative research methodology focuses on measuring and testing numerical data. This approach is good for reaching a large number of people in a short amount of time. This type of research helps in testing the causal relationships between variables, making predictions, and generalizing results to wider populations.
  • Qualitative research methodology examines the opinions, behaviors, and experiences of people. It collects and analyzes words and textual data. This research methodology requires fewer participants but is still more time consuming because the time spent per participant is quite large. This method is used in exploratory research where the research problem being investigated is not clearly defined.
  • Mixed-method research methodology uses the characteristics of both quantitative and qualitative research methodologies in the same study. This method allows researchers to validate their findings, verify if the results observed using both methods are complementary, and explain any unexpected results obtained from one method by using the other method.

What are the types of sampling designs in research methodology?

Sampling 4 is an important part of a research methodology and involves selecting a representative sample of the population to conduct the study, making statistical inferences about them, and estimating the characteristics of the whole population based on these inferences. There are two types of sampling designs in research methodology—probability and nonprobability.

  • Probability sampling

In this type of sampling design, a sample is chosen from a larger population using some form of random selection, that is, every member of the population has an equal chance of being selected. The different types of probability sampling are:

  • Systematic —sample members are chosen at regular intervals. It requires selecting a starting point for the sample and sample size determination that can be repeated at regular intervals. This type of sampling method has a predefined range; hence, it is the least time consuming.
  • Stratified —researchers divide the population into smaller groups that don’t overlap but represent the entire population. While sampling, these groups can be organized, and then a sample can be drawn from each group separately.
  • Cluster —the population is divided into clusters based on demographic parameters like age, sex, location, etc.
  • Convenience —selects participants who are most easily accessible to researchers due to geographical proximity, availability at a particular time, etc.
  • Purposive —participants are selected at the researcher’s discretion. Researchers consider the purpose of the study and the understanding of the target audience.
  • Snowball —already selected participants use their social networks to refer the researcher to other potential participants.
  • Quota —while designing the study, the researchers decide how many people with which characteristics to include as participants. The characteristics help in choosing people most likely to provide insights into the subject.

What are data collection methods?

During research, data are collected using various methods depending on the research methodology being followed and the research methods being undertaken. Both qualitative and quantitative research have different data collection methods, as listed below.

Qualitative research 5

  • One-on-one interviews: Helps the interviewers understand a respondent’s subjective opinion and experience pertaining to a specific topic or event
  • Document study/literature review/record keeping: Researchers’ review of already existing written materials such as archives, annual reports, research articles, guidelines, policy documents, etc.
  • Focus groups: Constructive discussions that usually include a small sample of about 6-10 people and a moderator, to understand the participants’ opinion on a given topic.
  • Qualitative observation : Researchers collect data using their five senses (sight, smell, touch, taste, and hearing).

Quantitative research 6

  • Sampling: The most common type is probability sampling.
  • Interviews: Commonly telephonic or done in-person.
  • Observations: Structured observations are most commonly used in quantitative research. In this method, researchers make observations about specific behaviors of individuals in a structured setting.
  • Document review: Reviewing existing research or documents to collect evidence for supporting the research.
  • Surveys and questionnaires. Surveys can be administered both online and offline depending on the requirement and sample size.

Let Paperpal help you write the perfect research methods section. Start now!

What are data analysis methods.

The data collected using the various methods for qualitative and quantitative research need to be analyzed to generate meaningful conclusions. These data analysis methods 7 also differ between quantitative and qualitative research.

Quantitative research involves a deductive method for data analysis where hypotheses are developed at the beginning of the research and precise measurement is required. The methods include statistical analysis applications to analyze numerical data and are grouped into two categories—descriptive and inferential.

Descriptive analysis is used to describe the basic features of different types of data to present it in a way that ensures the patterns become meaningful. The different types of descriptive analysis methods are:

  • Measures of frequency (count, percent, frequency)
  • Measures of central tendency (mean, median, mode)
  • Measures of dispersion or variation (range, variance, standard deviation)
  • Measure of position (percentile ranks, quartile ranks)

Inferential analysis is used to make predictions about a larger population based on the analysis of the data collected from a smaller population. This analysis is used to study the relationships between different variables. Some commonly used inferential data analysis methods are:

  • Correlation: To understand the relationship between two or more variables.
  • Cross-tabulation: Analyze the relationship between multiple variables.
  • Regression analysis: Study the impact of independent variables on the dependent variable.
  • Frequency tables: To understand the frequency of data.
  • Analysis of variance: To test the degree to which two or more variables differ in an experiment.

Qualitative research involves an inductive method for data analysis where hypotheses are developed after data collection. The methods include:

  • Content analysis: For analyzing documented information from text and images by determining the presence of certain words or concepts in texts.
  • Narrative analysis: For analyzing content obtained from sources such as interviews, field observations, and surveys. The stories and opinions shared by people are used to answer research questions.
  • Discourse analysis: For analyzing interactions with people considering the social context, that is, the lifestyle and environment, under which the interaction occurs.
  • Grounded theory: Involves hypothesis creation by data collection and analysis to explain why a phenomenon occurred.
  • Thematic analysis: To identify important themes or patterns in data and use these to address an issue.

How to choose a research methodology?

Here are some important factors to consider when choosing a research methodology: 8

  • Research objectives, aims, and questions —these would help structure the research design.
  • Review existing literature to identify any gaps in knowledge.
  • Check the statistical requirements —if data-driven or statistical results are needed then quantitative research is the best. If the research questions can be answered based on people’s opinions and perceptions, then qualitative research is most suitable.
  • Sample size —sample size can often determine the feasibility of a research methodology. For a large sample, less effort- and time-intensive methods are appropriate.
  • Constraints —constraints of time, geography, and resources can help define the appropriate methodology.

Got writer’s block? Kickstart your research paper writing with Paperpal now!

How to write a research methodology .

A research methodology should include the following components: 3,9

  • Research design —should be selected based on the research question and the data required. Common research designs include experimental, quasi-experimental, correlational, descriptive, and exploratory.
  • Research method —this can be quantitative, qualitative, or mixed-method.
  • Reason for selecting a specific methodology —explain why this methodology is the most suitable to answer your research problem.
  • Research instruments —explain the research instruments you plan to use, mainly referring to the data collection methods such as interviews, surveys, etc. Here as well, a reason should be mentioned for selecting the particular instrument.
  • Sampling —this involves selecting a representative subset of the population being studied.
  • Data collection —involves gathering data using several data collection methods, such as surveys, interviews, etc.
  • Data analysis —describe the data analysis methods you will use once you’ve collected the data.
  • Research limitations —mention any limitations you foresee while conducting your research.
  • Validity and reliability —validity helps identify the accuracy and truthfulness of the findings; reliability refers to the consistency and stability of the results over time and across different conditions.
  • Ethical considerations —research should be conducted ethically. The considerations include obtaining consent from participants, maintaining confidentiality, and addressing conflicts of interest.

Streamline Your Research Paper Writing Process with Paperpal  

The methods section is a critical part of the research papers, allowing researchers to use this to understand your findings and replicate your work when pursuing their own research. However, it is usually also the most difficult section to write. This is where Paperpal can help you overcome the writer’s block and create the first draft in minutes with Paperpal Copilot, its secure generative AI feature suite.  

With Paperpal you can get research advice, write and refine your work, rephrase and verify the writing, and ensure submission readiness, all in one place. Here’s how you can use Paperpal to develop the first draft of your methods section.  

  • Generate an outline: Input some details about your research to instantly generate an outline for your methods section 
  • Develop the section: Use the outline and suggested sentence templates to expand your ideas and develop the first draft.  
  • P araph ras e and trim : Get clear, concise academic text with paraphrasing that conveys your work effectively and word reduction to fix redundancies. 
  • Choose the right words: Enhance text by choosing contextual synonyms based on how the words have been used in previously published work.  
  • Check and verify text : Make sure the generated text showcases your methods correctly, has all the right citations, and is original and authentic. .   

You can repeat this process to develop each section of your research manuscript, including the title, abstract and keywords. Ready to write your research papers faster, better, and without the stress? Sign up for Paperpal and start writing today!

Frequently Asked Questions

Q1. What are the key components of research methodology?

A1. A good research methodology has the following key components:

  • Research design
  • Data collection procedures
  • Data analysis methods
  • Ethical considerations

Q2. Why is ethical consideration important in research methodology?

A2. Ethical consideration is important in research methodology to ensure the readers of the reliability and validity of the study. Researchers must clearly mention the ethical norms and standards followed during the conduct of the research and also mention if the research has been cleared by any institutional board. The following 10 points are the important principles related to ethical considerations: 10

  • Participants should not be subjected to harm.
  • Respect for the dignity of participants should be prioritized.
  • Full consent should be obtained from participants before the study.
  • Participants’ privacy should be ensured.
  • Confidentiality of the research data should be ensured.
  • Anonymity of individuals and organizations participating in the research should be maintained.
  • The aims and objectives of the research should not be exaggerated.
  • Affiliations, sources of funding, and any possible conflicts of interest should be declared.
  • Communication in relation to the research should be honest and transparent.
  • Misleading information and biased representation of primary data findings should be avoided.

forms of hypothesis in research methodology

Q3. What is the difference between methodology and method?

A3. Research methodology is different from a research method, although both terms are often confused. Research methods are the tools used to gather data, while the research methodology provides a framework for how research is planned, conducted, and analyzed. The latter guides researchers in making decisions about the most appropriate methods for their research. Research methods refer to the specific techniques, procedures, and tools used by researchers to collect, analyze, and interpret data, for instance surveys, questionnaires, interviews, etc.

Research methodology is, thus, an integral part of a research study. It helps ensure that you stay on track to meet your research objectives and answer your research questions using the most appropriate data collection and analysis tools based on your research design.

Accelerate your research paper writing with Paperpal. Try for free now!  

  • Research methodologies. Pfeiffer Library website. Accessed August 15, 2023. https://library.tiffin.edu/researchmethodologies/whatareresearchmethodologies
  • Types of research methodology. Eduvoice website. Accessed August 16, 2023. https://eduvoice.in/types-research-methodology/
  • The basics of research methodology: A key to quality research. Voxco. Accessed August 16, 2023. https://www.voxco.com/blog/what-is-research-methodology/
  • Sampling methods: Types with examples. QuestionPro website. Accessed August 16, 2023. https://www.questionpro.com/blog/types-of-sampling-for-social-research/
  • What is qualitative research? Methods, types, approaches, examples. Researcher.Life blog. Accessed August 15, 2023. https://researcher.life/blog/article/what-is-qualitative-research-methods-types-examples/
  • What is quantitative research? Definition, methods, types, and examples. Researcher.Life blog. Accessed August 15, 2023. https://researcher.life/blog/article/what-is-quantitative-research-types-and-examples/
  • Data analysis in research: Types & methods. QuestionPro website. Accessed August 16, 2023. https://www.questionpro.com/blog/data-analysis-in-research/#Data_analysis_in_qualitative_research
  • Factors to consider while choosing the right research methodology. PhD Monster website. Accessed August 17, 2023. https://www.phdmonster.com/factors-to-consider-while-choosing-the-right-research-methodology/
  • What is research methodology? Research and writing guides. Accessed August 14, 2023. https://paperpile.com/g/what-is-research-methodology/
  • Ethical considerations. Business research methodology website. Accessed August 17, 2023. https://research-methodology.net/research-methodology/ethical-considerations/

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

  • Dangling Modifiers and How to Avoid Them in Your Writing 
  • Research Outlines: How to Write An Introduction Section in Minutes with Paperpal Copilot
  • How to Paraphrase Research Papers Effectively
  • What is a Literature Review? How to Write It (with Examples)

Language and Grammar Rules for Academic Writing

Climatic vs. climactic: difference and examples, you may also like, dissertation printing and binding | types & comparison , what is a dissertation preface definition and examples , how to write a research proposal: (with examples..., how to write your research paper in apa..., how to choose a dissertation topic, how to write a phd research proposal, how to write an academic paragraph (step-by-step guide), maintaining academic integrity with paperpal’s generative ai writing..., research funding basics: what should a grant proposal..., how to write an abstract in research papers....

  • Privacy Policy

Research Method

Home » Research Design – Types, Methods and Examples

Research Design – Types, Methods and Examples

Table of Contents

Research Design

Research Design

Definition:

Research design refers to the overall strategy or plan for conducting a research study. It outlines the methods and procedures that will be used to collect and analyze data, as well as the goals and objectives of the study. Research design is important because it guides the entire research process and ensures that the study is conducted in a systematic and rigorous manner.

Types of Research Design

Types of Research Design are as follows:

Descriptive Research Design

This type of research design is used to describe a phenomenon or situation. It involves collecting data through surveys, questionnaires, interviews, and observations. The aim of descriptive research is to provide an accurate and detailed portrayal of a particular group, event, or situation. It can be useful in identifying patterns, trends, and relationships in the data.

Correlational Research Design

Correlational research design is used to determine if there is a relationship between two or more variables. This type of research design involves collecting data from participants and analyzing the relationship between the variables using statistical methods. The aim of correlational research is to identify the strength and direction of the relationship between the variables.

Experimental Research Design

Experimental research design is used to investigate cause-and-effect relationships between variables. This type of research design involves manipulating one variable and measuring the effect on another variable. It usually involves randomly assigning participants to groups and manipulating an independent variable to determine its effect on a dependent variable. The aim of experimental research is to establish causality.

Quasi-experimental Research Design

Quasi-experimental research design is similar to experimental research design, but it lacks one or more of the features of a true experiment. For example, there may not be random assignment to groups or a control group. This type of research design is used when it is not feasible or ethical to conduct a true experiment.

Case Study Research Design

Case study research design is used to investigate a single case or a small number of cases in depth. It involves collecting data through various methods, such as interviews, observations, and document analysis. The aim of case study research is to provide an in-depth understanding of a particular case or situation.

Longitudinal Research Design

Longitudinal research design is used to study changes in a particular phenomenon over time. It involves collecting data at multiple time points and analyzing the changes that occur. The aim of longitudinal research is to provide insights into the development, growth, or decline of a particular phenomenon over time.

Structure of Research Design

The format of a research design typically includes the following sections:

  • Introduction : This section provides an overview of the research problem, the research questions, and the importance of the study. It also includes a brief literature review that summarizes previous research on the topic and identifies gaps in the existing knowledge.
  • Research Questions or Hypotheses: This section identifies the specific research questions or hypotheses that the study will address. These questions should be clear, specific, and testable.
  • Research Methods : This section describes the methods that will be used to collect and analyze data. It includes details about the study design, the sampling strategy, the data collection instruments, and the data analysis techniques.
  • Data Collection: This section describes how the data will be collected, including the sample size, data collection procedures, and any ethical considerations.
  • Data Analysis: This section describes how the data will be analyzed, including the statistical techniques that will be used to test the research questions or hypotheses.
  • Results : This section presents the findings of the study, including descriptive statistics and statistical tests.
  • Discussion and Conclusion : This section summarizes the key findings of the study, interprets the results, and discusses the implications of the findings. It also includes recommendations for future research.
  • References : This section lists the sources cited in the research design.

Example of Research Design

An Example of Research Design could be:

Research question: Does the use of social media affect the academic performance of high school students?

Research design:

  • Research approach : The research approach will be quantitative as it involves collecting numerical data to test the hypothesis.
  • Research design : The research design will be a quasi-experimental design, with a pretest-posttest control group design.
  • Sample : The sample will be 200 high school students from two schools, with 100 students in the experimental group and 100 students in the control group.
  • Data collection : The data will be collected through surveys administered to the students at the beginning and end of the academic year. The surveys will include questions about their social media usage and academic performance.
  • Data analysis : The data collected will be analyzed using statistical software. The mean scores of the experimental and control groups will be compared to determine whether there is a significant difference in academic performance between the two groups.
  • Limitations : The limitations of the study will be acknowledged, including the fact that social media usage can vary greatly among individuals, and the study only focuses on two schools, which may not be representative of the entire population.
  • Ethical considerations: Ethical considerations will be taken into account, such as obtaining informed consent from the participants and ensuring their anonymity and confidentiality.

How to Write Research Design

Writing a research design involves planning and outlining the methodology and approach that will be used to answer a research question or hypothesis. Here are some steps to help you write a research design:

  • Define the research question or hypothesis : Before beginning your research design, you should clearly define your research question or hypothesis. This will guide your research design and help you select appropriate methods.
  • Select a research design: There are many different research designs to choose from, including experimental, survey, case study, and qualitative designs. Choose a design that best fits your research question and objectives.
  • Develop a sampling plan : If your research involves collecting data from a sample, you will need to develop a sampling plan. This should outline how you will select participants and how many participants you will include.
  • Define variables: Clearly define the variables you will be measuring or manipulating in your study. This will help ensure that your results are meaningful and relevant to your research question.
  • Choose data collection methods : Decide on the data collection methods you will use to gather information. This may include surveys, interviews, observations, experiments, or secondary data sources.
  • Create a data analysis plan: Develop a plan for analyzing your data, including the statistical or qualitative techniques you will use.
  • Consider ethical concerns : Finally, be sure to consider any ethical concerns related to your research, such as participant confidentiality or potential harm.

When to Write Research Design

Research design should be written before conducting any research study. It is an important planning phase that outlines the research methodology, data collection methods, and data analysis techniques that will be used to investigate a research question or problem. The research design helps to ensure that the research is conducted in a systematic and logical manner, and that the data collected is relevant and reliable.

Ideally, the research design should be developed as early as possible in the research process, before any data is collected. This allows the researcher to carefully consider the research question, identify the most appropriate research methodology, and plan the data collection and analysis procedures in advance. By doing so, the research can be conducted in a more efficient and effective manner, and the results are more likely to be valid and reliable.

Purpose of Research Design

The purpose of research design is to plan and structure a research study in a way that enables the researcher to achieve the desired research goals with accuracy, validity, and reliability. Research design is the blueprint or the framework for conducting a study that outlines the methods, procedures, techniques, and tools for data collection and analysis.

Some of the key purposes of research design include:

  • Providing a clear and concise plan of action for the research study.
  • Ensuring that the research is conducted ethically and with rigor.
  • Maximizing the accuracy and reliability of the research findings.
  • Minimizing the possibility of errors, biases, or confounding variables.
  • Ensuring that the research is feasible, practical, and cost-effective.
  • Determining the appropriate research methodology to answer the research question(s).
  • Identifying the sample size, sampling method, and data collection techniques.
  • Determining the data analysis method and statistical tests to be used.
  • Facilitating the replication of the study by other researchers.
  • Enhancing the validity and generalizability of the research findings.

Applications of Research Design

There are numerous applications of research design in various fields, some of which are:

  • Social sciences: In fields such as psychology, sociology, and anthropology, research design is used to investigate human behavior and social phenomena. Researchers use various research designs, such as experimental, quasi-experimental, and correlational designs, to study different aspects of social behavior.
  • Education : Research design is essential in the field of education to investigate the effectiveness of different teaching methods and learning strategies. Researchers use various designs such as experimental, quasi-experimental, and case study designs to understand how students learn and how to improve teaching practices.
  • Health sciences : In the health sciences, research design is used to investigate the causes, prevention, and treatment of diseases. Researchers use various designs, such as randomized controlled trials, cohort studies, and case-control studies, to study different aspects of health and healthcare.
  • Business : Research design is used in the field of business to investigate consumer behavior, marketing strategies, and the impact of different business practices. Researchers use various designs, such as survey research, experimental research, and case studies, to study different aspects of the business world.
  • Engineering : In the field of engineering, research design is used to investigate the development and implementation of new technologies. Researchers use various designs, such as experimental research and case studies, to study the effectiveness of new technologies and to identify areas for improvement.

Advantages of Research Design

Here are some advantages of research design:

  • Systematic and organized approach : A well-designed research plan ensures that the research is conducted in a systematic and organized manner, which makes it easier to manage and analyze the data.
  • Clear objectives: The research design helps to clarify the objectives of the study, which makes it easier to identify the variables that need to be measured, and the methods that need to be used to collect and analyze data.
  • Minimizes bias: A well-designed research plan minimizes the chances of bias, by ensuring that the data is collected and analyzed objectively, and that the results are not influenced by the researcher’s personal biases or preferences.
  • Efficient use of resources: A well-designed research plan helps to ensure that the resources (time, money, and personnel) are used efficiently and effectively, by focusing on the most important variables and methods.
  • Replicability: A well-designed research plan makes it easier for other researchers to replicate the study, which enhances the credibility and reliability of the findings.
  • Validity: A well-designed research plan helps to ensure that the findings are valid, by ensuring that the methods used to collect and analyze data are appropriate for the research question.
  • Generalizability : A well-designed research plan helps to ensure that the findings can be generalized to other populations, settings, or situations, which increases the external validity of the study.

Research Design Vs Research Methodology

Research DesignResearch Methodology
The plan and structure for conducting research that outlines the procedures to be followed to collect and analyze data.The set of principles, techniques, and tools used to carry out the research plan and achieve research objectives.
Describes the overall approach and strategy used to conduct research, including the type of data to be collected, the sources of data, and the methods for collecting and analyzing data.Refers to the techniques and methods used to gather, analyze and interpret data, including sampling techniques, data collection methods, and data analysis techniques.
Helps to ensure that the research is conducted in a systematic, rigorous, and valid way, so that the results are reliable and can be used to make sound conclusions.Includes a set of procedures and tools that enable researchers to collect and analyze data in a consistent and valid manner, regardless of the research design used.
Common research designs include experimental, quasi-experimental, correlational, and descriptive studies.Common research methodologies include qualitative, quantitative, and mixed-methods approaches.
Determines the overall structure of the research project and sets the stage for the selection of appropriate research methodologies.Guides the researcher in selecting the most appropriate research methods based on the research question, research design, and other contextual factors.
Helps to ensure that the research project is feasible, relevant, and ethical.Helps to ensure that the data collected is accurate, valid, and reliable, and that the research findings can be interpreted and generalized to the population of interest.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Scope of the Research

Scope of the Research – Writing Guide and...

Research Paper Conclusion

Research Paper Conclusion – Writing Guide and...

Research Paper

Research Paper – Structure, Examples and Writing...

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Research Methods

Research Methods – Types, Examples and Guide

Significance of the Study

Significance of the Study – Examples and Writing...

Leave a comment x.

Save my name, email, and website in this browser for the next time I comment.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

Research Methods | Definitions, Types, Examples

Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design . When planning your methods, there are two key decisions you will make.

First, decide how you will collect data . Your methods depend on what type of data you need to answer your research question :

  • Qualitative vs. quantitative : Will your data take the form of words or numbers?
  • Primary vs. secondary : Will you collect original data yourself, or will you use data that has already been collected by someone else?
  • Descriptive vs. experimental : Will you take measurements of something as it is, or will you perform an experiment?

Second, decide how you will analyze the data .

  • For quantitative data, you can use statistical analysis methods to test relationships between variables.
  • For qualitative data, you can use methods such as thematic analysis to interpret patterns and meanings in the data.

Table of contents

Methods for collecting data, examples of data collection methods, methods for analyzing data, examples of data analysis methods, other interesting articles, frequently asked questions about research methods.

Data is the information that you collect for the purposes of answering your research question . The type of data you need depends on the aims of your research.

Qualitative vs. quantitative data

Your choice of qualitative or quantitative data collection depends on the type of knowledge you want to develop.

For questions about ideas, experiences and meanings, or to study something that can’t be described numerically, collect qualitative data .

If you want to develop a more mechanistic understanding of a topic, or your research involves hypothesis testing , collect quantitative data .

Qualitative to broader populations. .
Quantitative .

You can also take a mixed methods approach , where you use both qualitative and quantitative research methods.

Primary vs. secondary research

Primary research is any original data that you collect yourself for the purposes of answering your research question (e.g. through surveys , observations and experiments ). Secondary research is data that has already been collected by other researchers (e.g. in a government census or previous scientific studies).

If you are exploring a novel research question, you’ll probably need to collect primary data . But if you want to synthesize existing knowledge, analyze historical trends, or identify patterns on a large scale, secondary data might be a better choice.

Primary . methods.
Secondary

Descriptive vs. experimental data

In descriptive research , you collect data about your study subject without intervening. The validity of your research will depend on your sampling method .

In experimental research , you systematically intervene in a process and measure the outcome. The validity of your research will depend on your experimental design .

To conduct an experiment, you need to be able to vary your independent variable , precisely measure your dependent variable, and control for confounding variables . If it’s practically and ethically possible, this method is the best choice for answering questions about cause and effect.

Descriptive . .
Experimental

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

forms of hypothesis in research methodology

Research methods for collecting data
Research method Primary or secondary? Qualitative or quantitative? When to use
Primary Quantitative To test cause-and-effect relationships.
Primary Quantitative To understand general characteristics of a population.
Interview/focus group Primary Qualitative To gain more in-depth understanding of a topic.
Observation Primary Either To understand how something occurs in its natural setting.
Secondary Either To situate your research in an existing body of work, or to evaluate trends within a research topic.
Either Either To gain an in-depth understanding of a specific group or context, or when you don’t have the resources for a large study.

Your data analysis methods will depend on the type of data you collect and how you prepare it for analysis.

Data can often be analyzed both quantitatively and qualitatively. For example, survey responses could be analyzed qualitatively by studying the meanings of responses or quantitatively by studying the frequencies of responses.

Qualitative analysis methods

Qualitative analysis is used to understand words, ideas, and experiences. You can use it to interpret data that was collected:

  • From open-ended surveys and interviews , literature reviews , case studies , ethnographies , and other sources that use text rather than numbers.
  • Using non-probability sampling methods .

Qualitative analysis tends to be quite flexible and relies on the researcher’s judgement, so you have to reflect carefully on your choices and assumptions and be careful to avoid research bias .

Quantitative analysis methods

Quantitative analysis uses numbers and statistics to understand frequencies, averages and correlations (in descriptive studies) or cause-and-effect relationships (in experiments).

You can use quantitative analysis to interpret data that was collected either:

  • During an experiment .
  • Using probability sampling methods .

Because the data is collected and analyzed in a statistically valid way, the results of quantitative analysis can be easily standardized and shared among researchers.

Research methods for analyzing data
Research method Qualitative or quantitative? When to use
Quantitative To analyze data collected in a statistically valid manner (e.g. from experiments, surveys, and observations).
Meta-analysis Quantitative To statistically analyze the results of a large collection of studies.

Can only be applied to studies that collected data in a statistically valid manner.

Qualitative To analyze data collected from interviews, , or textual sources.

To understand general themes in the data and how they are communicated.

Either To analyze large volumes of textual or visual data collected from surveys, literature reviews, or other sources.

Can be quantitative (i.e. frequencies of words) or qualitative (i.e. meanings of words).

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Chi square test of independence
  • Statistical power
  • Descriptive statistics
  • Degrees of freedom
  • Pearson correlation
  • Null hypothesis
  • Double-blind study
  • Case-control study
  • Research ethics
  • Data collection
  • Hypothesis testing
  • Structured interviews

Research bias

  • Hawthorne effect
  • Unconscious bias
  • Recall bias
  • Halo effect
  • Self-serving bias
  • Information bias

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts and meanings, use qualitative methods .
  • If you want to analyze a large amount of readily-available data, use secondary data. If you want data specific to your purposes with control over how it is generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyze data (for example, experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

Is this article helpful?

Other students also liked, writing strong research questions | criteria & examples.

  • What Is a Research Design | Types, Guide & Examples
  • Data Collection | Definition, Methods & Examples

More interesting articles

  • Between-Subjects Design | Examples, Pros, & Cons
  • Cluster Sampling | A Simple Step-by-Step Guide with Examples
  • Confounding Variables | Definition, Examples & Controls
  • Construct Validity | Definition, Types, & Examples
  • Content Analysis | Guide, Methods & Examples
  • Control Groups and Treatment Groups | Uses & Examples
  • Control Variables | What Are They & Why Do They Matter?
  • Correlation vs. Causation | Difference, Designs & Examples
  • Correlational Research | When & How to Use
  • Critical Discourse Analysis | Definition, Guide & Examples
  • Cross-Sectional Study | Definition, Uses & Examples
  • Descriptive Research | Definition, Types, Methods & Examples
  • Ethical Considerations in Research | Types & Examples
  • Explanatory and Response Variables | Definitions & Examples
  • Explanatory Research | Definition, Guide, & Examples
  • Exploratory Research | Definition, Guide, & Examples
  • External Validity | Definition, Types, Threats & Examples
  • Extraneous Variables | Examples, Types & Controls
  • Guide to Experimental Design | Overview, Steps, & Examples
  • How Do You Incorporate an Interview into a Dissertation? | Tips
  • How to Do Thematic Analysis | Step-by-Step Guide & Examples
  • How to Write a Literature Review | Guide, Examples, & Templates
  • How to Write a Strong Hypothesis | Steps & Examples
  • Inclusion and Exclusion Criteria | Examples & Definition
  • Independent vs. Dependent Variables | Definition & Examples
  • Inductive Reasoning | Types, Examples, Explanation
  • Inductive vs. Deductive Research Approach | Steps & Examples
  • Internal Validity in Research | Definition, Threats, & Examples
  • Internal vs. External Validity | Understanding Differences & Threats
  • Longitudinal Study | Definition, Approaches & Examples
  • Mediator vs. Moderator Variables | Differences & Examples
  • Mixed Methods Research | Definition, Guide & Examples
  • Multistage Sampling | Introductory Guide & Examples
  • Naturalistic Observation | Definition, Guide & Examples
  • Operationalization | A Guide with Examples, Pros & Cons
  • Population vs. Sample | Definitions, Differences & Examples
  • Primary Research | Definition, Types, & Examples
  • Qualitative vs. Quantitative Research | Differences, Examples & Methods
  • Quasi-Experimental Design | Definition, Types & Examples
  • Questionnaire Design | Methods, Question Types & Examples
  • Random Assignment in Experiments | Introduction & Examples
  • Random vs. Systematic Error | Definition & Examples
  • Reliability vs. Validity in Research | Difference, Types and Examples
  • Reproducibility vs Replicability | Difference & Examples
  • Reproducibility vs. Replicability | Difference & Examples
  • Sampling Methods | Types, Techniques & Examples
  • Semi-Structured Interview | Definition, Guide & Examples
  • Simple Random Sampling | Definition, Steps & Examples
  • Single, Double, & Triple Blind Study | Definition & Examples
  • Stratified Sampling | Definition, Guide & Examples
  • Structured Interview | Definition, Guide & Examples
  • Survey Research | Definition, Examples & Methods
  • Systematic Review | Definition, Example, & Guide
  • Systematic Sampling | A Step-by-Step Guide with Examples
  • Textual Analysis | Guide, 3 Approaches & Examples
  • The 4 Types of Reliability in Research | Definitions & Examples
  • The 4 Types of Validity in Research | Definitions & Examples
  • Transcribing an Interview | 5 Steps & Transcription Software
  • Triangulation in Research | Guide, Types, Examples
  • Types of Interviews in Research | Guide & Examples
  • Types of Research Designs Compared | Guide & Examples
  • Types of Variables in Research & Statistics | Examples
  • Unstructured Interview | Definition, Guide & Examples
  • What Is a Case Study? | Definition, Examples & Methods
  • What Is a Case-Control Study? | Definition & Examples
  • What Is a Cohort Study? | Definition & Examples
  • What Is a Conceptual Framework? | Tips & Examples
  • What Is a Controlled Experiment? | Definitions & Examples
  • What Is a Double-Barreled Question?
  • What Is a Focus Group? | Step-by-Step Guide & Examples
  • What Is a Likert Scale? | Guide & Examples
  • What Is a Prospective Cohort Study? | Definition & Examples
  • What Is a Retrospective Cohort Study? | Definition & Examples
  • What Is Action Research? | Definition & Examples
  • What Is an Observational Study? | Guide & Examples
  • What Is Concurrent Validity? | Definition & Examples
  • What Is Content Validity? | Definition & Examples
  • What Is Convenience Sampling? | Definition & Examples
  • What Is Convergent Validity? | Definition & Examples
  • What Is Criterion Validity? | Definition & Examples
  • What Is Data Cleansing? | Definition, Guide & Examples
  • What Is Deductive Reasoning? | Explanation & Examples
  • What Is Discriminant Validity? | Definition & Example
  • What Is Ecological Validity? | Definition & Examples
  • What Is Ethnography? | Definition, Guide & Examples
  • What Is Face Validity? | Guide, Definition & Examples
  • What Is Non-Probability Sampling? | Types & Examples
  • What Is Participant Observation? | Definition & Examples
  • What Is Peer Review? | Types & Examples
  • What Is Predictive Validity? | Examples & Definition
  • What Is Probability Sampling? | Types & Examples
  • What Is Purposive Sampling? | Definition & Examples
  • What Is Qualitative Observation? | Definition & Examples
  • What Is Qualitative Research? | Methods & Examples
  • What Is Quantitative Observation? | Definition & Examples
  • What Is Quantitative Research? | Definition, Uses & Methods

"I thought AI Proofreading was useless but.."

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

StatAnalytica

Step-by-step guide to hypothesis testing in statistics

hypothesis testing in statistics

Hypothesis testing in statistics helps us use data to make informed decisions. It starts with an assumption or guess about a group or population—something we believe might be true. We then collect sample data to check if there is enough evidence to support or reject that guess. This method is useful in many fields, like science, business, and healthcare, where decisions need to be based on facts.

Learning how to do hypothesis testing in statistics step-by-step can help you better understand data and make smarter choices, even when things are uncertain. This guide will take you through each step, from creating your hypothesis to making sense of the results, so you can see how it works in practical situations.

What is Hypothesis Testing?

Table of Contents

Hypothesis testing is a method for determining whether data supports a certain idea or assumption about a larger group. It starts by making a guess, like an average or a proportion, and then uses a small sample of data to see if that guess seems true or not.

For example, if a company wants to know if its new product is more popular than its old one, it can use hypothesis testing. They start with a statement like “The new product is not more popular than the old one” (this is the null hypothesis) and compare it with “The new product is more popular” (this is the alternative hypothesis). Then, they look at customer feedback to see if there’s enough evidence to reject the first statement and support the second one.

Simply put, hypothesis testing is a way to use data to help make decisions and understand what the data is really telling us, even when we don’t have all the answers.

Importance Of Hypothesis Testing In Decision-Making And Data Analysis

Hypothesis testing is important because it helps us make smart choices and understand data better. Here’s why it’s useful:

  • Reduces Guesswork : It helps us see if our guesses or ideas are likely correct, even when we don’t have all the details.
  • Uses Real Data : Instead of just guessing, it checks if our ideas match up with real data, which makes our decisions more reliable.
  • Avoids Errors : It helps us avoid mistakes by carefully checking if our ideas are right so we don’t make costly errors.
  • Shows What to Do Next : It tells us if our ideas work or not, helping us decide whether to keep, change, or drop something. For example, a company might test a new ad and decide what to do based on the results.
  • Confirms Research Findings : It makes sure that research results are accurate and not just random chance so that we can trust the findings.

Here’s a simple guide to understanding hypothesis testing, with an example:

1. Set Up Your Hypotheses

Explanation: Start by defining two statements:

  • Null Hypothesis (H0): This is the idea that there is no change or effect. It’s what you assume is true.
  • Alternative Hypothesis (H1): This is what you want to test. It suggests there is a change or effect.

Example: Suppose a company says their new batteries last an average of 500 hours. To check this:

  • Null Hypothesis (H0): The average battery life is 500 hours.
  • Alternative Hypothesis (H1): The average battery life is not 500 hours.

2. Choose the Test

Explanation: Pick a statistical test that fits your data and your hypotheses. Different tests are used for various kinds of data.

Example: Since you’re comparing the average battery life, you use a one-sample t-test .

3. Set the Significance Level

Explanation: Decide how much risk you’re willing to take if you make a wrong decision. This is called the significance level, often set at 0.05 or 5%.

Example: You choose a significance level of 0.05, meaning you’re okay with a 5% chance of being wrong.

4. Gather and Analyze Data

Explanation: Collect your data and perform the test. Calculate the test statistic to see how far your sample result is from what you assumed.

Example: You test 30 batteries and find they last an average of 485 hours. You then calculate how this average compares to the claimed 500 hours using the t-test.

5. Find the p-Value

Explanation: The p-value tells you the probability of getting a result as extreme as yours if the null hypothesis is true.

Example: You find a p-value of 0.0001. This means there’s a very small chance (0.01%) of getting an average battery life of 485 hours or less if the true average is 500 hours.

6. Make Your Decision

Explanation: Compare the p-value to your significance level. If the p-value is smaller, you reject the null hypothesis. If it’s larger, you do not reject it.

Example: Since 0.0001 is much less than 0.05, you reject the null hypothesis. This means the data suggests the average battery life is different from 500 hours.

7. Report Your Findings

Explanation: Summarize what the results mean. State whether you rejected the null hypothesis and what that implies.

Example: You conclude that the average battery life is likely different from 500 hours. This suggests the company’s claim might not be accurate.

Hypothesis testing is a way to use data to check if your guesses or assumptions are likely true. By following these steps—setting up your hypotheses, choosing the right test, deciding on a significance level, analyzing your data, finding the p-value, making a decision, and reporting results—you can determine if your data supports or challenges your initial idea.

Understanding Hypothesis Testing: A Simple Explanation

Hypothesis testing is a way to use data to make decisions. Here’s a straightforward guide:

1. What is the Null and Alternative Hypotheses?

  • Null Hypothesis (H0): This is your starting assumption. It says that nothing has changed or that there is no effect. It’s what you assume to be true until your data shows otherwise. Example: If a company says their batteries last 500 hours, the null hypothesis is: “The average battery life is 500 hours.” This means you think the claim is correct unless you find evidence to prove otherwise.
  • Alternative Hypothesis (H1): This is what you want to find out. It suggests that there is an effect or a difference. It’s what you are testing to see if it might be true. Example: To test the company’s claim, you might say: “The average battery life is not 500 hours.” This means you think the average battery life might be different from what the company says.

2. One-Tailed vs. Two-Tailed Tests

  • One-Tailed Test: This test checks for an effect in only one direction. You use it when you’re only interested in finding out if something is either more or less than a specific value. Example: If you think the battery lasts longer than 500 hours, you would use a one-tailed test to see if the battery life is significantly more than 500 hours.
  • Two-Tailed Test: This test checks for an effect in both directions. Use this when you want to see if something is different from a specific value, whether it’s more or less. Example: If you want to see if the battery life is different from 500 hours, whether it’s more or less, you would use a two-tailed test. This checks for any significant difference, regardless of the direction.

3. Common Misunderstandings

  • Clarification: Hypothesis testing doesn’t prove that the null hypothesis is true. It just helps you decide if you should reject it. If there isn’t enough evidence against it, you don’t reject it, but that doesn’t mean it’s definitely true.
  • Clarification: A small p-value shows that your data is unlikely if the null hypothesis is true. It suggests that the alternative hypothesis might be right, but it doesn’t prove the null hypothesis is false.
  • Clarification: The significance level (alpha) is a set threshold, like 0.05, that helps you decide how much risk you’re willing to take for making a wrong decision. It should be chosen carefully, not randomly.
  • Clarification: Hypothesis testing helps you make decisions based on data, but it doesn’t guarantee your results are correct. The quality of your data and the right choice of test affect how reliable your results are.

Benefits and Limitations of Hypothesis Testing

  • Clear Decisions: Hypothesis testing helps you make clear decisions based on data. It shows whether the evidence supports or goes against your initial idea.
  • Objective Analysis: It relies on data rather than personal opinions, so your decisions are based on facts rather than feelings.
  • Concrete Numbers: You get specific numbers, like p-values, to understand how strong the evidence is against your idea.
  • Control Risk: You can set a risk level (alpha level) to manage the chance of making an error, which helps avoid incorrect conclusions.
  • Widely Used: It can be used in many areas, from science and business to social studies and engineering, making it a versatile tool.

Limitations

  • Sample Size Matters: The results can be affected by the size of the sample. Small samples might give unreliable results, while large samples might find differences that aren’t meaningful in real life.
  • Risk of Misinterpretation: A small p-value means the results are unlikely if the null hypothesis is true, but it doesn’t show how important the effect is.
  • Needs Assumptions: Hypothesis testing requires certain conditions, like data being normally distributed . If these aren’t met, the results might not be accurate.
  • Simple Decisions: It often results in a basic yes or no decision without giving detailed information about the size or impact of the effect.
  • Can Be Misused: Sometimes, people misuse hypothesis testing, tweaking data to get a desired result or focusing only on whether the result is statistically significant.
  • No Absolute Proof: Hypothesis testing doesn’t prove that your hypothesis is true. It only helps you decide if there’s enough evidence to reject the null hypothesis, so the conclusions are based on likelihood, not certainty.

Final Thoughts 

Hypothesis testing helps you make decisions based on data. It involves setting up your initial idea, picking a significance level, doing the test, and looking at the results. By following these steps, you can make sure your conclusions are based on solid information, not just guesses.

This approach lets you see if the evidence supports or contradicts your initial idea, helping you make better decisions. But remember that hypothesis testing isn’t perfect. Things like sample size and assumptions can affect the results, so it’s important to be aware of these limitations.

In simple terms, using a step-by-step guide for hypothesis testing is a great way to better understand your data. Follow the steps carefully and keep in mind the method’s limits.

What is the difference between one-tailed and two-tailed tests?

 A one-tailed test assesses the probability of the observed data in one direction (either greater than or less than a certain value). In contrast, a two-tailed test looks at both directions (greater than and less than) to detect any significant deviation from the null hypothesis.

How do you choose the appropriate test for hypothesis testing?

The choice of test depends on the type of data you have and the hypotheses you are testing. Common tests include t-tests, chi-square tests, and ANOVA. You get more details about ANOVA, you may read Complete Details on What is ANOVA in Statistics ?  It’s important to match the test to the data characteristics and the research question.

What is the role of sample size in hypothesis testing?  

Sample size affects the reliability of hypothesis testing. Larger samples provide more reliable estimates and can detect smaller effects, while smaller samples may lead to less accurate results and reduced power.

Can hypothesis testing prove that a hypothesis is true?  

Hypothesis testing cannot prove that a hypothesis is true. It can only provide evidence to support or reject the null hypothesis. A result can indicate whether the data is consistent with the null hypothesis or not, but it does not prove the alternative hypothesis with certainty.

Related Posts

how-to-find-the=best-online-statistics-homework-help

How to Find the Best Online Statistics Homework Help

why-spss-homework-help-is-an-important-aspects-for-students

Why SPSS Homework Help Is An Important aspect for Students?

Leave a comment cancel reply.

Your email address will not be published. Required fields are marked *

Logo for Pressbooks at Virginia Tech

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

5.5 Introduction to Hypothesis Tests

Dalmation puppy near man sitting on the floor.

One job of a statistician is to make statistical inferences about populations based on samples taken from the population. Confidence intervals are one way to estimate a population parameter.

Another way to make a statistical inference is to make a decision about a parameter. For instance, a car dealership advertises that its new small truck gets 35 miles per gallon on average. A tutoring service claims that its method of tutoring helps 90% of its students get an A or a B. A company says that female managers in their company earn an average of $60,000 per year. A statistician may want to make a decision about or evaluate these claims. A hypothesis test can be used to do this.

A hypothesis test involves collecting data from a sample and evaluating the data. Then the statistician makes a decision as to whether or not there is sufficient evidence to reject the null hypothesis based upon analyses of the data.

In this section, you will conduct hypothesis tests on single means when the population standard deviation is known.

Hypothesis testing consists of two contradictory hypotheses or statements, a decision based on the data, and a conclusion. To perform a hypothesis test, a statistician will perform some variation of these steps:

  • Define hypotheses.
  • Collect and/or use the sample data to determine the correct distribution to use.
  • Calculate test statistic.
  • Make a decision.
  • Write a conclusion.

Defining your hypotheses

The actual test begins by considering two hypotheses: the null hypothesis and the alternative hypothesis. These hypotheses contain opposing viewpoints.

The null hypothesis ( H 0 ) is often a statement of the accepted historical value or norm. This is your starting point that you must assume from the beginning in order to show an effect exists.

The alternative hypothesis ( H a ) is a claim about the population that is contradictory to H 0 and what we conclude when we reject H 0 .

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.

After you have determined which hypothesis the sample supports, you make a decision . There are two options for a decision. They are “reject H 0 ” if the sample information favors the alternative hypothesis or “do not reject H 0 ” or “decline to reject H 0 ” if the sample information is insufficient to reject the null hypothesis.

The following table shows mathematical symbols used in H 0 and H a :

Figure 5.12: Null and alternative hypotheses
equal (=) not equal (≠) greater than (>) less than (<)
equal (=) less than (<)
equal (=) more than (>)

NOTE: H 0 always has a symbol with an equal in it. H a never has a symbol with an equal in it. The choice of symbol in the alternative hypothesis depends on the wording of the hypothesis test. Despite this, many researchers may use =, ≤, or ≥ in the null hypothesis. This practice is acceptable because our only decision is to reject or not reject the null hypothesis.

We want to test whether the mean GPA of students in American colleges is 2.0 (out of 4.0). The null hypothesis is: H 0 : μ = 2.0. What is the alternative hypothesis?

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25%. State the null and alternative hypotheses.

Using the Sample to Test the Null Hypothesis

Once you have defined your hypotheses, the next step in the process is to collect sample data. In a classroom context, the data or summary statistics will usually be given to you.

Then you will have to determine the correct distribution to perform the hypothesis test, given the assumptions you are able to make about the situation. Right now, we are demonstrating these ideas in a test for a mean when the population standard deviation is known using the z distribution. We will see other scenarios in the future.

Calculating a Test Statistic

Next you will start evaluating the data. This begins with calculating your test statistic , which is a measure of the distance between what you observed and what you are assuming to be true. In this context, your test statistic, z ο , quantifies the number of standard deviations between the sample mean, x, and the population mean, µ . Calculating the test statistic is analogous to the previously discussed process of standardizing observations with z -scores:

z=\frac{\overline{x}-{\mu }_{o}}{\left(\frac{\sigma }{\sqrt{n}}\right)}

where µ o   is the value assumed to be true in the null hypothesis.

Making a Decision

Once you have your test statistic, there are two methods to use it to make your decision:

  • Critical value method (discussed further in later chapters)
  • p -value method (our current focus)

p -Value Method

To find a p -value , we use the test statistic to calculate the actual probability of getting the test result. Formally, the p -value is the probability that, if the null hypothesis is true, the results from another randomly selected sample will be as extreme or more extreme as the results obtained from the given sample.

A large p -value calculated from the data indicates that we should not reject the null hypothesis. The smaller the p -value, the more unlikely the outcome and the stronger the evidence is against the null hypothesis. We would reject the null hypothesis if the evidence is strongly against it.

Draw a graph that shows the p -value. The hypothesis test is easier to perform if you use a graph because you see the problem more clearly.

Suppose a baker claims that his bread height is more than 15 cm on average. Several of his customers do not believe him. To persuade his customers that he is right, the baker decides to do a hypothesis test. He bakes ten loaves of bread. The mean height of the sample loaves is 17 cm. The baker knows from baking hundreds of loaves of bread that the standard deviation for the height is 0.5 cm and the distribution of heights is normal.

The null hypothesis could be H 0 : μ ≤ 15.

The alternate hypothesis is H a : μ > 15.

The words “is more than” calls for the use of the > symbol, so “ μ > 15″ goes into the alternate hypothesis. The null hypothesis must contradict the alternate hypothesis.

\frac{\sigma }{\sqrt{n}}

Suppose the null hypothesis is true (the mean height of the loaves is no more than 15 cm). Then, is the mean height (17 cm) calculated from the sample unexpectedly large? The hypothesis test works by asking how unlikely the sample mean would be if the null hypothesis were true. The graph shows how far out the sample mean is on the normal curve. The p -value is the probability that, if we were to take other samples, any other sample mean would fall at least as far out as 17 cm.

This means that the p -value is the probability that a sample mean is the same or greater than 17 cm when the population mean is, in fact, 15 cm. We can calculate this probability using the normal distribution for means.

Normal distribution curve on average bread heights with values 15, as the population mean, and 17, as the point to determine the p-value, on the x-axis.

A p -value of approximately zero tells us that it is highly unlikely that a loaf of bread rises no more than 15 cm on average. That is, almost 0% of all loaves of bread would be at least as high as 17 cm purely by CHANCE had the population mean height really been 15 cm. Because the outcome of 17 cm is so unlikely (meaning it is happening NOT by chance alone), we conclude that the evidence is strongly against the null hypothesis that the mean height would be at most 15 cm. There is sufficient evidence that the true mean height for the population of the baker’s loaves of bread is greater than 15 cm.

A normal distribution has a standard deviation of one. We want to verify a claim that the mean is greater than 12. A sample of 36 is taken with a sample mean of 12.5.

Find the p -value.

Decision and Conclusion

A systematic way to decide whether to reject or not reject the null hypothesis is to compare the p -value and a preset or preconceived α (also called a significance level ). A preset α is the probability of a type I error (rejecting the null hypothesis when the null hypothesis is true). It may or may not be given to you at the beginning of the problem. If there is no given preconceived α , then use α = 0.05.

When you make a decision to reject or not reject H 0 , do as follows:

  • If α > p -value, reject H 0 . The results of the sample data are statistically significant . You can say there is sufficient evidence to conclude that H 0 is an incorrect belief and that the alternative hypothesis, H a , may be correct.
  • If α ≤ p -value, fail to reject H 0 . The results of the sample data are not significant. There is not sufficient evidence to conclude that the alternative hypothesis, H a , may be correct.

After you make your decision, write a thoughtful conclusion in the context of the scenario incorporating the hypotheses.

NOTE: When you “do not reject H 0 ,” it does not mean that you should believe that H 0 is true. It simply means that the sample data have failed to provide sufficient evidence to cast serious doubt about the truthfulness of H o .

When using the p -value to evaluate a hypothesis test, the following rhymes can come in handy:

If the p -value is low, the null must go.

If the p -value is high, the null must fly.

This memory aid relates a p -value less than the established alpha (“the p -value is low”) as rejecting the null hypothesis and, likewise, relates a p -value higher than the established alpha (“the p -value is high”) as not rejecting the null hypothesis.

Fill in the blanks:

  • Reject the null hypothesis when              .
  • The results of the sample data             .
  • Do not reject the null when hypothesis when             .

It’s a Boy Genetics Labs claim their procedures improve the chances of a boy being born. The results for a test of a single population proportion are as follows:

  • H 0 : p = 0.50, H a : p > 0.50
  • p -value = 0.025

Interpret the results and state a conclusion in simple, non-technical terms.

Click here for more multimedia resources, including podcasts, videos, lecture notes, and worked examples.

Figure References

Figure 5.11: Alora Griffiths (2019). dalmatian puppy near man in blue shorts kneeling. Unsplash license. https://unsplash.com/photos/7aRQZtLsvqw

Figure 5.13: Kindred Grey (2020). Bread height probability. CC BY-SA 4.0.

A decision-making procedure for determining whether sample evidence supports a hypothesis

The claim that is assumed to be true and is tested in a hypothesis test

A working hypothesis that is contradictory to the null hypothesis

A measure of the difference between observations and the hypothesized (or claimed) value

The probability that an event will occur, assuming the null hypothesis is true

Probability that a true null hypothesis will be rejected, also known as type I error and denoted by α

Finding sufficient evidence that the observed effect is not just due to variability, often from rejecting the null hypothesis

Significant Statistics Copyright © 2024 by John Morgan Russell, OpenStaxCollege, OpenIntro is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

We Trust in Human Precision

20,000+ Professional Language Experts Ready to Help. Expertise in a variety of Niches.

API Solutions

  • API Pricing
  • Cost estimate
  • Customer loyalty program
  • Educational Discount
  • Non-Profit Discount
  • Green Initiative Discount1

Value-Driven Pricing

Unmatched expertise at affordable rates tailored for your needs. Our services empower you to boost your productivity.

PC editors choice

  • Special Discounts
  • Enterprise transcription solutions
  • Enterprise translation solutions
  • Transcription/Caption API
  • AI Transcription Proofreading API

Trusted by Global Leaders

GoTranscript is the chosen service for top media organizations, universities, and Fortune 50 companies.

GoTranscript

One of the Largest Online Transcription and Translation Agencies in the World. Founded in 2005.

Speaker 1: Welcome to this overview of quantitative research methods. This tutorial will give you the big picture of quantitative research and introduce key concepts that will help you determine if quantitative methods are appropriate for your project study. First, what is educational research? Educational research is a process of scholarly inquiry designed to investigate the process of instruction and learning, the behaviors, perceptions, and attributes of students and teachers, the impact of institutional processes and policies, and all other areas of the educational process. The research design may be quantitative, qualitative, or a mixed methods design. The focus of this overview is quantitative methods. The general purpose of quantitative research is to explain, predict, investigate relationships, describe current conditions, or to examine possible impacts or influences on designated outcomes. Quantitative research differs from qualitative research in several ways. It works to achieve different goals and uses different methods and design. This table illustrates some of the key differences. Qualitative research generally uses a small sample to explore and describe experiences through the use of thick, rich descriptions of detailed data in an attempt to understand and interpret human perspectives. It is less interested in generalizing to the population as a whole. For example, when studying bullying, a qualitative researcher might learn about the experience of the victims and the experience of the bully by interviewing both bullies and victims and observing them on the playground. Quantitative studies generally use large samples to test numerical data by comparing or finding correlations among sample attributes so that the findings can be generalized to the population. If quantitative researchers were studying bullying, they might measure the effects of a bully on the victim by comparing students who are victims and students who are not victims of bullying using an attitudinal survey. In conducting quantitative research, the researcher first identifies the problem. For Ed.D. research, this problem represents a gap in practice. For Ph.D. research, this problem represents a gap in the literature. In either case, the problem needs to be of importance in the professional field. Next, the researcher establishes the purpose of the study. Why do you want to do the study, and what do you intend to accomplish? This is followed by research questions which help to focus the study. Once the study is focused, the researcher needs to review both seminal works and current peer-reviewed primary sources. Based on the research question and on a review of prior research, a hypothesis is created that predicts the relationship between the study's variables. Next, the researcher chooses a study design and methods to test the hypothesis. These choices should be informed by a review of methodological approaches used to address similar questions in prior research. Finally, appropriate analytical methods are used to analyze the data, allowing the researcher to draw conclusions and inferences about the data, and answer the research question that was originally posed. In quantitative research, research questions are typically descriptive, relational, or causal. Descriptive questions constrain the researcher to describing what currently exists. With a descriptive research question, one can examine perceptions or attitudes as well as more concrete variables such as achievement. For example, one might describe a population of learners by gathering data on their age, gender, socioeconomic status, and attributes towards their learning experiences. Relational questions examine the relationship between two or more variables. The X variable has some linear relationship to the Y variable. Causal inferences cannot be made from this type of research. For example, one could study the relationship between students' study habits and achievements. One might find that students using certain kinds of study strategies demonstrate greater learning, but one could not state conclusively that using certain study strategies will lead to or cause higher achievement. Causal questions, on the other hand, are designed to allow the researcher to draw a causal inference. A causal question seeks to determine if a treatment variable in a program had an effect on one or more outcome variables. In other words, the X variable influences the Y variable. For example, one could design a study that answered the question of whether a particular instructional approach caused students to learn more. The research question serves as a basis for posing a hypothesis, a predicted answer to the research question that incorporates operational definitions of the study's variables and is rooted in the literature. An operational definition matches a concept with a method of measurement, identifying how the concept will be quantified. For example, in a study of instructional strategies, the hypothesis might be that students of teachers who use Strategy X will exhibit greater learning than students of teachers who do not. In this study, one would need to operationalize learning by identifying a test or instrument that would measure learning. This approach allows the researcher to create a testable hypothesis. Relational and causal research relies on the creation of a null hypothesis, a version of the research hypothesis that predicts no relationship between variables or no effect of one variable on another. When writing the hypothesis for a quantitative question, the null hypothesis and the research or alternative hypothesis use parallel sentence structure. In this example, the null hypothesis states that there will be no statistical difference between groups, while the research or alternative hypothesis states that there will be a statistical difference between groups. Note also that both hypothesis statements operationalize the critical thinking skills variable by identifying the measurement instrument to be used. Once the research questions and hypotheses are solidified, the researcher must select a design that will create a situation in which the hypotheses can be tested and the research questions answered. Ideally, the research design will isolate the study's variables and control for intervening variables so that one can be certain of the relationships being tested. In educational research, however, it is extremely difficult to establish sufficient controls in the complex social settings being studied. In our example of investigating the impact of a certain instructional strategy in the classroom on student achievement, each day the teacher uses a specific instructional strategy. After school, some of the students in her class receive tutoring. Other students have parents that are very involved in their child's academic progress and provide learning experiences in the home. These students may do better because they received extra help, not because the teacher's instructional strategy is more effective. Unless the researcher can control for the intervening variable of extra help, it will be impossible to effectively test the study's hypothesis. Quantitative research designs can fall into two broad categories, experimental and quasi-experimental. Classic experimental designs are those that randomly assign subjects to either a control or treatment comparison group. The researcher can then compare the treatment group to the control group to test for an intervention's effect, known as a between-subject design. It is important to note that the control group may receive a standard treatment or may receive a treatment of any kind. Quasi-experimental designs do not randomly assign subjects to groups, but rather take advantage of existing groups. A researcher can still have a control and comparison group, but assignment to the groups is not random. The use of a control group is not required. However, the researcher may choose a design in which a single group is pre- and post-tested, known as a within-subjects design. Or a single group may receive only a post-test. Since quasi-experimental designs lack random assignment, the researcher should be aware of the threats to validity. Educational research often attempts to measure abstract variables such as attitudes, beliefs, and feelings. Surveys can capture data about these hard-to-measure variables, as well as other self-reported information such as demographic factors. A survey is an instrument used to collect verifiable information from a sample population. In quantitative research, surveys typically include questions that ask respondents to choose a rating from a scale, select one or more items from a list, or other responses that result in numerical data. Studies that use surveys or tests need to include strategies that establish the validity of the instrument used. There are many types of validity that need to be addressed. Face validity. Does the test appear at face value to measure what it is supposed to measure? Content validity. Content validity includes both item validity and sampling validity. Item validity ensures that the individual test items deal only with the subject being addressed. Sampling validity ensures that the range of item topics is appropriate to the subject being studied. For example, item validity might be high, but if all the items only deal with one aspect of the subjects, then sampling validity is low. Content validity can be established by having experts in the field review the test. Concurrent validity. Does a new test correlate with an older, established test that measures the same thing? Predictive validity. Does the test correlate with another related measure? For example, GRE tests are used at many colleges because these schools believe that a good grade on this test increases the probability that the student will do well at the college. Linear regression can establish the predictive validity of a test. Construct validity. Does the test measure the construct it is intended to measure? Establishing construct validity can be a difficult task when the constructs being measured are abstract. But it can be established by conducting a number of studies in which you test hypotheses regarding the construct, or by completing a factor analysis to ensure that you have the number of constructs that you say you have. In addition to ensuring the validity of instruments, the quantitative researcher needs to establish their reliability as well. Strategies for establishing reliability include Test retest. Correlates scores from two different administrations of the same test. Alternate forms. Correlates scores from administrations of two different forms of the same test. Split half reliability. Treats each half of one test or survey as a separate administration and correlates the results from each. Internal consistency. Uses Cronbach's coefficient alpha to calculate the average of all possible split halves. Quantitative research almost always relies on a sample that is intended to be representative of a larger population. There are two basic sampling strategies, random and non-random, and a number of specific strategies within each of these approaches. This table provides examples of each of the major strategies. The next section of this tutorial provides an overview of the procedures in conducting quantitative data analysis. There are specific procedures for conducting the data collection, preparing for and analyzing data, presenting the findings, and connecting to the body of existing research. This process ensures that the research is conducted as a systematic investigation that leads to credible results. Data comes in various sizes and shapes, and it is important to know about these so that the proper analysis can be used on the data. In 1946, S.S. Stevens first described the properties of measurement systems that allowed decisions about the type of measurement and about the attributes of objects that are preserved in numbers. These four types of data are referred to as nominal, ordinal, interval, and ratio. First, let's examine nominal data. With nominal data, there is no number value that indicates quantity. Instead, a number has been assigned to represent a certain attribute, like the number 1 to represent male and the number 2 to represent female. In other words, the number is just a label. You could also assign numbers to represent race, religion, or any other categorical information. Nominal data only denotes group membership. With ordinal data, there is again no indication of quantity. Rather, a number is assigned for ranking order. For example, satisfaction surveys often ask respondents to rank order their level of satisfaction with services or programs. The next level of measurement is interval data. With interval data, there are equal distances between two values, but there is no natural zero. A common example is the Fahrenheit temperature scale. Differences between the temperature measurements make sense, but ratios do not. For instance, 20 degrees Fahrenheit is not twice as hot as 10 degrees Fahrenheit. You can add and subtract interval level data, but they cannot be divided or multiplied. Finally, we have ratio data. Ratio is the same as interval, however ratios, means, averages, and other numerical formulas are all possible and make sense. Zero has a logical meaning, which shows the absence of, or having none of. Examples of ratio data are height, weight, speed, or any quantities based on a scale with a natural zero. In summary, nominal data can only be counted. Ordinal data can be counted and ranked. Interval data can also be added and subtracted, and ratio data can also be used in ratios and other calculations. Determining what type of data you have is one of the most important aspects of quantitative analysis. Depending on the research question, hypotheses, and research design, the researcher may choose to use descriptive and or inferential statistics to begin to analyze the data. Descriptive statistics are best illustrated when viewed through the lens of America's pastimes. Sports, weather, economy, stock market, and even our retirement portfolio are presented in a descriptive analysis. Basic terminology for descriptive statistics are terms that we are most familiar in this discipline. Frequency, mean, median, mode, range, variance, and standard deviation. Simply put, you are describing the data. Some of the most common graphic representations of data are bar graphs, pie graphs, histograms, and box and whisker graphs. Attempting to reach conclusions and make causal inferences beyond graphic representations or descriptive analyses is referred to as inferential statistics. In other words, examining the college enrollment of the past decade in a certain geographical region would assist in estimating what the enrollment for the next year might be. Frequently in education, the means of two or more groups are compared. When comparing means to assist in answering a research question, one can use a within-group, between-groups, or mixed-subject design. In a within-group design, the researcher compares measures of the same subjects across time, therefore within-group, or under different treatment conditions. This can also be referred to as a dependent-group design. The most basic example of this type of quasi-experimental design would be if a researcher conducted a pretest of a group of students, subjected them to a treatment, and then conducted a post-test. The group has been measured at different points in time. In a between-group design, subjects are assigned to one of the two or more groups. For example, Control, Treatment 1, Treatment 2. Ideally, the sampling and assignment to groups would be random, which would make this an experimental design. The researcher can then compare the means of the treatment group to the control group. When comparing two groups, the researcher can gain insight into the effects of the treatment. In a mixed-subjects design, the researcher is testing for significant differences between two or more independent groups while subjecting them to repeated measures. Choosing a statistical test to compare groups depends on the number of groups, whether the data are nominal, ordinal, or interval, and whether the data meet the assumptions for parametric tests. Nonparametric tests are typically used with nominal and ordinal data, while parametric tests use interval and ratio-level data. In addition to this, some further assumptions are made for parametric tests that the data are normally distributed in the population, that participant selection is independent, and the selection of one person does not determine the selection of another, and that the variances of the groups being compared are equal. The assumption of independent participant selection cannot be violated, but the others are more flexible. The t-test assesses whether the means of two groups are statistically different from each other. This analysis is appropriate whenever you want to compare the means of two groups, and especially appropriate as the method of analysis for a quasi-experimental design. When choosing a t-test, the assumptions are that the data are parametric. The analysis of variance, or ANOVA, assesses whether the means of more than two groups are statistically different from each other. When choosing an ANOVA, the assumptions are that the data are parametric. The chi-square test can be used when you have non-parametric data and want to compare differences between groups. The Kruskal-Wallis test can be used when there are more than two groups and the data are non-parametric. Correlation analysis is a set of statistical tests to determine whether there are linear relationships between two or more sets of variables from the same list of items or individuals, for example, achievement and performance of students. The tests provide a statistical yes or no as to whether a significant relationship or correlation exists between the variables. A correlation test consists of calculating a correlation coefficient between two variables. Again, there are parametric and non-parametric choices based on the assumptions of the data. Pearson R correlation is widely used in statistics to measure the strength of the relationship between linearly related variables. Spearman-Rank correlation is a non-parametric test that is used to measure the degree of association between two variables. Spearman-Rank correlation test does not assume any assumptions about the distribution. Spearman-Rank correlation test is used when the Pearson test gives misleading results. Often a Kendall-Taw is also included in this list of non-parametric correlation tests to examine the strength of the relationship if there are less than 20 rankings. Linear regression and correlation are similar and often confused. Sometimes your methodologist will encourage you to examine both the calculations. Calculate linear correlation if you measured both variables, x and y. Make sure to use the Pearson parametric correlation coefficient if you are certain you are not violating the test assumptions. Otherwise, choose the Spearman non-parametric correlation coefficient. If either variable has been manipulated using an intervention, do not calculate a correlation. While linear regression does indicate the nature of the relationship between two variables, like correlation, it can also be used to make predictions because one variable is considered explanatory while the other is considered a dependent variable. Establishing validity is a critical part of quantitative research. As with the nature of quantitative research, there is a defined approach or process for establishing validity. This also allows for the findings transferability. For a study to be valid, the evidence must support the interpretations of the data, the data must be accurate, and their use in drawing conclusions must be logical and appropriate. Construct validity concerns whether what you did for the program was what you wanted to do, or whether what you observed was what you wanted to observe. Construct validity concerns whether the operationalization of your variables are related to the theoretical concepts you are trying to measure. Are you actually measuring what you want to measure? Internal validity means that you have evidence that what you did in the study, i.e., the program, caused what you observed, i.e., the outcome, to happen. Conclusion validity is the degree to which conclusions drawn about relationships in the data are reasonable. External validity concerns the process of generalizing, or the degree to which the conclusions in your study would hold for other persons in other places and at other times. Establishing reliability and validity to your study is one of the most critical elements of the research process. Once you have decided to embark upon the process of conducting a quantitative study, use the following steps to get started. First, review research studies that have been conducted on your topic to determine what methods were used. Consider the strengths and weaknesses of the various data collection and analysis methods. Next, review the literature on quantitative research methods. Every aspect of your research has a body of literature associated with it. Just as you would not confine yourself to your course textbooks for your review of research on your topic, you should not limit yourself to your course texts for your review of methodological literature. Read broadly and deeply from the scholarly literature to gain expertise in quantitative research. Additional self-paced tutorials have been developed on different methodologies and techniques associated with quantitative research. Make sure that you complete all of the self-paced tutorials and review them as often as needed. You will then be prepared to complete a literature review of the specific methodologies and techniques that you will use in your study. Thank you for watching.

techradar

Search Site

Sjögren’s foundation announces 2024 research grant awardees.

General Information — Sep 5, 2024

  • Increase Font Size
  • Decrease Font Size

The Sjögren’s Foundation is excited to announce the selection of five new research grant recipients for the Foundation’s High Impact Grant, Dynamic Grant, and Pilot Grants. 

Types of Foundation Grants and their Impact

The Sjögren’s Foundation High Impact Grants are given to more fully developed research proposals to help a project that has preliminary data and good scientific methodology in place to move forward into the next phase of their project. We are fully committed to awarding one High Impact Grant each year.

The Pilot Research Grant assists investigators in obtaining resources, like preliminary data or feasibility studies, necessary to advance their project to help them pursue larger funding from other resources like the National Institutes of Health (NIH), or a High Impact Grant with the Foundation. We are also committed to awarding one Pilot Grant each year. In 2024, we awarded three Pilot Grants.

The Foundation’s Dynamic Grant is given to investigators that have time-sensitive, but critical work that may fall outside the scope of the Foundation’s other funding opportunities. Proposals for this grant are considered based on their scientific strength, needs for the patient, and available funding.

These Foundation grants not only support research that will benefit patients with Sjögren's, but they are also an investment in the researchers who receive the grants. To demonstrate the importance of this, two past grant recipients, who are internationally recognized Sjögren's researchers share their gratitude. Sara McCoy, MD, PhD is a rheumatologist who established the Sjögren's Clinic at the University of Wisconsin, where she also has a Sjögren’s research lab. Dr. McCoy credits the Foundation. 

dr McCoy

Sara McCoy, MD, PhD- Director of the UW Health Sjögren’s Clinic

My grant from the Sjögren's Foundation served as my first steppingstone toward independent research, building my research program momentum. Without this first extramural grant from the Foundation— investing not only in an idea, but also in an early stage Sjögren’s investigator— I would not be in the position to help patients that I find myself now. Since my grant, I’ve been an investigator or collaborator on four NIH-funded grants, including as an AMP® AIM Leadership Scholar Program recipient. I am thankful for the opportunity the Foundation provided and I hope that I can return the favor by improving Sjögren’s patients’ lives.

Christopher Lessard, PhD, a scientist at the Oklahoma Medical Research Foundation, leads the international Sjögren's Genetics Network. He received his very first research grant from the Foundation in 2013 and shared the immense value of that grant.

Dr. Christopher Lessard

Christopher Lessard, PhD- Professor, Oklahoma Medical Research Foundation

Sjögren’s Foundation grants provide vital support for researchers focused on advancing our knowledge about Sjögren’s.  A Foundation Pilot Grant was the first grant I received as an early-career investigator. It was instrumental in the early progression of my career, and I know several other investigators that have had similar experiences.  Nearly a decade later, my research program was honored as the first recipient of the Foundation’s Dynamic Grant, which is aiding in our ongoing efforts to improve genetic understanding of the disease. Foundation grants go a long way towards building the Sjögren’s research community and providing pilot or bridge funding to projects that may otherwise not have happened.

As the only non-profit organization for Sjögren's patients, we have a key mission to fund innovative research. We are proud of the research we have funded and honored to have impacted so many amazing investigators.

We are thrilled to see where these projects lead our investigators and how it will impact Sjögren’s patients in the future. Please continue to read about this exciting research funded by the Foundation’s grants below. 

High Impact Grant Recipient

Dr. Hal Scofield standing in his lab

R. Hal Scofield,  MD   Professor  Oklahoma Medical Research Foundation 

Project Title: Mechanisms of Fatigue in Sjögren’s  

Abstract: Sjögren’s disease (SjD) is chronic autoimmune disease in which the deleterious immune response is directed primarily towards the exocrine glands, including the lacrimal and salivary glands. Severe fatigue is common in SjD. There is only a limited understanding of the pathophysiology of fatigue in SjD. Overall, there are large areas of unmet medical needs in SjD, including understanding the pathophysiological mechanisms of the clinical manifestations. Our preliminary data demonstrate mitochondrial dysfunction in SjD patients, a novel finding. Also, fatigue is highly correlated with mitochondrial dysfunction. We find increased free radical damage and abnormal expression of mitophagy-related genes. These findings provide a powerful premise for the proposed work. The PI hypothesizes that mitochondrial dysfunction is associated with fatigue and is caused by abnormal mitophagy, with increased free radical generation by defective mitochondria. We propose the following specific aims to address our hypothesis: In Aim 1, we will determine the clinical associations and correlates of mitochondrial dysfunction among a large group of SjD patients, testing the hypothesis that mitochondrial dysfunction is correlated with fatigue. We further hypothesize that kynurenine levels, lowered by chronic, low-level inflammation, will be associated with mitochondrial dysfunction and fatigue in SjD. For Aim 2, we hypothesize that worsened free radical damage will be strongly associated with worsened mitochondrial function. Here, we will determine the role of free radicals in SjD mitochondrial dysfunction. In Aim 3, we will determine the role of mitophagy in SjD mitochondrial dysfunction, testing the hypothesis that not only will one of the two central pathways for mitophagy be abnormal within lymphocytes in the peripheral blood, but that this abnormal expression will be found among those patients with mitochondrial dysfunction and fatigue. 

What does Dr. Scofield’s research mean for Sjögren’s patients? 

According to the Living with Sjögren’s patient survey results, 88% of respondents experienced fatigue and 79% said that fatigue had a major or moderate impact on their life. Approximately 25% of patient respondents said that fatigue had the greatest negative impact on their life. Dr. Scofield’s research aims to determine the underlying mechanism of fatigue in Sjögren’s, which can help develop future management and treatment options for patients with Sjögren’s and fatigue.     

Pilot Grant Recipients  

Headshot of Dr. Jennifer King

Jennifer King, MD, PhD  Associate Clinical Professor in Medicine  University of California, Los Angeles 

Project Title: Molecular Phenotyping of Treatment Responsive Sjögren’s Patients 

Abstract: There are no FDA-approved treatments for Sjögren’s disease (SjD). The reasons for failures of immune modulating medications are multi-factorial, including diversity of clinical disease and challenges of selecting primary endpoints to define treatment response. This proposal will examine SjD patients considered treatment responsive (defined here as changes in 1 or more validated Sjögren’s outcome measures) to define objective cellular and molecular markers of change. We will compare these  patients to treatment non-responsive and no treatment. We will use single-cell sequencing to examine individual’s pre- and post-treatment samples, looking at global signatures in all immune cells, but also specifically in monocyte subsets. We hypothesize that treatment responsive SjD patients have distinct cellular and molecular characteristics that correlate with changes in disease activity. The goal is to define objective signatures that may be used in conjunction with current disease outcome measures to assess treatment response. 

  What does Dr. King’s research mean for Sjögren’s patients? 

Since Sjögren’s is a heterogeneous disease, there are many unknown factors that play a role in the effectiveness of a treatment. Dr. King’s work will determine cellular and molecular signatures of individual SjD patients and how that affects their response to treatment. This work has huge implications on patient stratification- or separating them into groups- to provide better treatments and will likely impact future drug discovery and clinical research. 

Headshot of Dr. Abigail Koppes

Abigail Koppes, PhD  Associate Professor, Chemical Engineering  Northeastern University  Project Title: Parsing Dysautonomia in a Dish: Neural Exposure to Exogenous Sjögren’s Patient Derived Serum  

Abstract: The complexity of nervous system interactions and cause-effect of glandular involvement in organ health in Sjögren’s patients creates a difficult disease to treat and identify. Dysautonomia and gastrointestinal disorders are correlated with the presence of autoantibodies and interferon and interleukin cascade activation, but the cause is not known. In this proposal, my lab will apply a new in vitro microphysiological system (MPS), or organ-on-a-chip, that combines human autonomic, central, and enteric neurons to systematically examine morphology and excitability in response to Sjögren’s derived serum and autoantibody insults. Our MPS will be used for effluent collection, electrophysiology, imaging, and transcriptomics with a systems biology approach to identify the molecular regulators and reveal if there are Sjögren’s-based differences in neuron responses to inflammatory cues. Through this proposal, a new MPS will be engineered to controllably study and disrupt the nervous system in the gut-brain axis environment typically inaccessible in vivo. 

What does Dr. Koppes’ research mean for Sjögren’s patients? 

Dr. Koppes’ research utilizes a newer technique to create a local nervous system microenvironment, also called a “nervous system on a chip”, to study the effect of various disease states. This research will look at how autoantibodies and other factors found in the serum of Sjögren’s patients affect developing neurological conditions associated with the gut-brain axis. We hope this will give us clues to the cause of gastrointestinal disorders and dysautonomia in Sjögren’s patients and allow us to examine the mechanisms of neuro-Sjögren’s. 

Headshot of Dr. Eiko Yamada

Eiko Yamada, DDS, PhD  Research Fellow  National Institute of Dental and Craniofacial Research

Project Title: Exploring Target Cells Contributing Higher Interferon Status Through cGAS-STING Pathway in Sjögren’s Disease 

Abstract: Sjögren’s disease (SjD) is a common systemic autoimmune disease with heterogeneous clinical presentation involving multiple biological pathways. The primary clinical symptoms include characteristic dry eyes, dry mouth, and profound fatigue. Currently, there are no approved and efficacious medications that can reverse disease progression or improve the main clinical complaints of SjD. One pathway that is classically involved in SjD is the Type-I interferon (IFN) signaling. However, the upstream mechanisms driving the increase in expression, or lack of feedback inhibition, of Type-I IFN is not elucidated deeply. The cGAS-STING pathway is a recently discovered intracellular pathogen sensing pathway that primarily responds to cytosolic double-stranded DNA. The cGAS-STING pathway has become a hot topic in immune and inflammatory diseases due to its ability to potently mediate the inflammatory response. Although a recent study offered the first direct evidence that cGAS-STING pathway is activated in systemic lupus erythematosus patients and modulates Type-I IFNs, the role of this pathway in SjD pathogenesis is unknown. Our preliminary bulk RNAseq data demonstrate enrichment of DNA Sensing Pathway and increased Type-I IFN-stimulated gene score in the blood and gland correlate with specific disease features in SjD. We discovered the novel findings that cGAS-STING proteins are activated in SjD and that correlates with Type-I IFN bioassay in sera. Based on these findings, we hypothesize that cGAS-STING pathway is chronically activated in SjD and contributes both local (glandular) and systemic (peripheral blood) symptoms via upregulated and persistent expression of IFNs. This study proposal aims to identify the specific cell types contributing cGAS-STING pathway in SjD-affected patient samples. This work will produce a deeper understanding of what happened as immune cell subset in SjD and support the future development of cGAS-STING proteins as targets for therapy.  

What does Dr. Yamada’s research mean for Sjögren’s patients? 

For autoimmune diseases, the prevention of inflammatory responses is a well-known therapeutic pathway. This work will determine deep immune phenotyping (characteristics) and the activation level of cGAS-STING pathway in Sjögren's patients. Investigation of the cGAS-STING pathway may produce a deeper understanding of its role in Sjögren’s patients and provide another therapeutic option for Sjögren’s treatment. 

Dynamic Grant Recipient  

Headshot of Dr. Dana DiRenzo

Dana DiRenzo, MD, MHS  Assistant Professor in Medicine  University of Pennsylvania 

Project Title: Development of a Core Outcomes Set of Domains for Sjögren’s Disease 

Abstract: Sjögren’s disease (SjD) has limited precise and reliable patient-reported outcome measures (PROs) to understand health related quality of life (HRQoL) from the patient perspective. SjD highly impacts HRQoL because of symptoms such as pain and fatigue, which drive patient disability, loss of work productivity, and healthcare utilization. The overall objectives are to identify SjD domains that are important to all relevant SjD stakeholders and generate a core outcome domain set. The rationale is that through the rigorous methodologic OMERACT framework, we will define key disease domains and core set measures to generate optimal measurement tools for clinical trials. The central hypothesis will be tested by three specific aims: 1) Generate a comprehensive list of important domains in SjD for each key aspect of disease (oral, ocular, biological, extra glandular, life impact) via literature reviews and focus groups; and 2) Conduct a Delphi exercise of generated domains in SjD to gain consensus agreement and inform a core domain set; and 3) Generate a core domain set and seek approval from the OMERACT community. The research proposed is innovative because for the first time, it engages all stakeholders from at least three continents from the start of the process for generation and selection of instruments to measure response in SjD clinical trials. 

What does Dr. DiRenzo’s research mean for Sjögren’s patients? 

Dr. DiRenzo’s research is an extension of the work done by OMERACT (Outcome Measures in Rheumatology) to produce reliable patient-reported outcome measures to be used for clinical trials. This work will identify Sjögren’s domains that are important and relevant to generate optimal measurement tools, and ultimately, provide critical new outcome measurements for clinical trials. The international Sjögren’s community will be involved to ensure that instruments used to measure response in Sjögren’s clinical trials are best practice and globally accepted.

Congratulations to our Foundation Research Grantees! Good luck with your research this year and we look forward to the impact your research will have on the Sjögren’s community!

Sjögren's Foundation Grants

Click below to learn more about the Foundation’s research opportunities or current and past grant recipients. 

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

energies-logo

Article Menu

forms of hypothesis in research methodology

  • Subscribe SciFeed
  • Recommended Articles
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Positive energy districts: fundamentals, assessment methodologies, modeling and research gaps.

forms of hypothesis in research methodology

1. Introduction

State of the art on positive energy districts, 2. methodology.

  • Setting: a café-like environment with small, round tables, tablecloths, colored pens, sticky notes and any interaction tool available.
  • Welcome and Introduction: the host offers a welcome, introduces the World Café process, and sets the context.
  • Small-Group Rounds: three or more twenty-minute rounds of conversations occur in small groups. Participants switch tables after each round, with one person optionally remaining as the “table host” to brief newcomers.
  • Questions: each round starts with a context-specific question. Questions may remain constant or be built upon each other to guide the discussion.
  • Harvest: participants share their discussion insights with the larger group, often visually represented through graphic recording.
  • Objectives of the workshop and preparation. The first step of the World Café approach is to identify the main objectives. For this workshop, there was the need to investigate the current landscape of PED research, as well as to have a benchmark and collect feedback on the current research activities within Annex 83. Questions were structured in order to frame the current state-of-the-art understanding of the topic. A mapping of the potential different stakeholders in the PED design and implementation process was carried out at this stage. As a result, municipalities, community representatives, energy contractors, real estate companies and commercial facilitators, as well as citizens, were identified as main target groups. Later, the follow-up discussions were built around these main actors. Further, the mapping of the stakeholders’ involvement was carried out for better understanding the complexity of relationships, roles and synergies as well as the impact on the design, implementation and operation stages of PEDs.
  • Positive Energy Districts’ definitions and fundamentals ( Section 3.1 ).
  • Quality-of-life indicators in Positive Energy Districts ( Section 3.2 ).
  • Technologies in Positive Energy Districts: development, use and barriers ( Section 3.3 ).
  • Positive Energy Districts modeling: what is further needed to model PEDs? ( Section 3.4 ).
  • Sustainability assessment of Positive Energy Districts ( Section 3.5 ).
  • Stakeholder engagement within the design process ( Section 3.6 ).
  • Tools and guidelines for PED implementation ( Section 3.7 ).

3.1. Positive Energy Districts Definitions and Fundamentals

3.2. quality-of-life indicators in positive energy districts, 3.3. technologies in positive energy districts: development, use and barriers, 3.4. positive energy districts modeling: what is further needed to model peds, 3.5. sustainability assessment of positive energy districts, 3.6. stakeholder engagement within the design process, 3.7. tools and guidelines for ped implementation, 4. conclusions, author contributions, data availability statement, acknowledgments, conflicts of interest.

  • European Commission; Directorate-General for Research and Innovation. 100 Climate-Neutral Cities by 2030—By and for the Citizens ; European Commission: Luxembourg, 2020. [ Google Scholar ]
  • Department of Economic and Social Affairs United Nations. 68% of the World Population Projected to Live in Urban Areas by 2050, Says UN. Available online: https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html (accessed on 24 June 2024).
  • Fatima, Z.; Vacha, T.; Swamygowda, K.; Qubailat, R. Getting Started with Positive Energy Districts: Experience until Now from Maia, Reykjavik, Kifissia, Kladno and Lviv. Sustainability 2022 , 14 , 5799. [ Google Scholar ] [ CrossRef ]
  • OECD. Managing Environmental and Energy Transitions for Regions and Cities ; OECD: Paris, France, 2020; Available online: https://www.oecd.org/en/about/projects/managing-environmental-and-energy-transitions-for-regions-and-cities.html (accessed on 24 June 2024).
  • Pierce, S.; Pallonetto, F.; De Donatis, L.; De Rosa, M. District energy modelling for decarbonisation strategies development—The case of a University campus. Energy Rep. 2024 , 11 , 1256–1267. [ Google Scholar ] [ CrossRef ]
  • U.N. SDGs Goal 11|Make Cities and Human Settlements Inclusive, Safe, Resilient and Sustainable. Available online: https://sdgs.un.org/goals/goal11 (accessed on 24 June 2024).
  • Shahmohammad, M.; Salamattalab, M.M.; Sohn, W.; Kouhizadeh, M.; Aghamohmmadi, N. Opportunities and obstacles of blockchain use in pursuit of sustainable development goal 11: A systematic scoping review. Sustain. Cities Soc. 2024 , 112 , 105620. [ Google Scholar ] [ CrossRef ]
  • Koch, F.; Ahmad, S. How to Measure Progress Towards an Inclusive, Safe, Resilient and Sustainable City? Reflections on Applying the Indicators of Sustainable Development Goal 11 in Germany and India. In Urban Transformations. Future City ; Kabisch, S., Koch, F., Gawel, E., Haase, A., Knapp, S., Krellenberg, K., Nivala, J., Zehnsdorf, A., Eds.; Springer: Cham, Switzerland, 2017; Volume 10. [ Google Scholar ] [ CrossRef ]
  • Sarvari, H.; Mehrabi, A.; Chan, D.W.M.; Cristofaro, M. Evaluating urban housing development patterns in developing countries: Case study of Worn-out Urban Fabrics in Iran. Sustain. Cities Soc. 2021 , 70 , 102941. [ Google Scholar ] [ CrossRef ]
  • Gondeck, M.; Triebel, M.-A.; Steingrube, A.; Albert-Seifried, V.; Stryi-Hipp, G. Recommendations for a positive energy district framework—Application and evaluation of different energetic assessment methodologies. Smart Energy 2024 , 15 , 100147. [ Google Scholar ] [ CrossRef ]
  • Gohari, S.; Castro Silvia, S.; Ashrafian, T.; Konstantinou, T.; Giancola, E.; Prebreza, B.; Aelenei, L.; Murauskaite, L.; Liu, M. Unraveling the implementation processes of PEDs: Lesson learned from multiple urban contexts. Sustain. Cities Soc. 2024 , 106 , 105402. [ Google Scholar ] [ CrossRef ]
  • Sassenou, L.-N.; Olivieri, L.; Olivieri, F. Challenges for positive energy districts deployment: A systematic review. Renew. Sustain. Energy Rev. 2024 , 191 , 114152. [ Google Scholar ] [ CrossRef ]
  • Good, N.; Martínez Ceseña, E.A.; Mancarella, P. Chapter Two—Energy Positivity and Flexibility in Districts. In Energy Positive Neighborhoods and Smart Energy Districts ; Monti, A., Pesch, D., Ellis, K.A., Mancarella, P., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 7–30. ISBN 9780128099513. [ Google Scholar ] [ CrossRef ]
  • Derkenbaeva, E.; Halleck Vega, S.; Hofstede, G.J.; van Leeuwen, E. Positive Energy Districts: Mainstreaming Energy Transition in Urban Areas. Renew. Sustain. Energy Rev. 2022 , 153 , 111782. [ Google Scholar ] [ CrossRef ]
  • Bruck, A.; Díaz Ruano, S.; Auer, H. One Piece of the Puzzle towards 100 Positive Energy Districts (PEDs) across Europe by 2025: An Open-Source Approach to Unveil Favourable Locations of PV-Based PEDs from a Techno-Economic Perspective. Energy 2022 , 254 , 124152. [ Google Scholar ] [ CrossRef ]
  • Vandevyvere, H.; Ahlers, D.; Wyckmans, A. The Sense and Non-Sense of PEDs—Feeding Back Practical Experiences of Positive Energy District Demonstrators into the European PED Framework Definition Development Process. Energies 2022 , 15 , 4491. [ Google Scholar ] [ CrossRef ]
  • Natanian, J.; Magyari, A.; Brunetti, A.; Reith, A.; Guarino, F.; Manapragada, N.; Cellura, S.; de Luca, F.; Naboni, E. Ten Questions on Tools and Methods for Positive Energy Districts. Build. Environ. 2024 , 255 , 111429. [ Google Scholar ] [ CrossRef ]
  • Perera, A.T.D.; Javanroodi, K.; Wang, Y.; Hong, T. Urban Cells: Extending the Energy Hub Concept to Facilitate Sector and Spatial Coupling. Adv. Appl. Energy 2021 , 3 , 100046. [ Google Scholar ] [ CrossRef ]
  • Aparisi-Cerdá, I.; Ribó-Pérez, D.; Cuesta-Fernandez, I.; Gómez-Navarro, T. Planning Positive Energy Districts in Urban Water Fronts: Approach to La Marina de València, Spain. Energy Convers. Manag. 2022 , 265 , 115795. [ Google Scholar ] [ CrossRef ]
  • Sareen, S.; Albert-Seifried, V.; Aelenei, L.; Reda, F.; Etminan, G.; Andreucci, M.-B.; Kuzmic, M.; Maas, N.; Seco, O.; Civiero, P.; et al. Ten Questions Concerning Positive Energy Districts. Build. Environ. 2022 , 216 , 109017. [ Google Scholar ] [ CrossRef ]
  • Mihailova, D.; Schubert, I.; Burger, P.; Fritz, M.M.C. Exploring modes of sustainable value co-creation in renewable energy communities. J. Clean. Prod. 2022 , 330 , 129917. [ Google Scholar ] [ CrossRef ]
  • Mihailova, D.; Schubert, I.; Martinez-Cruz, A.L.; Hearn, A.X.; Sohre, A. Preferences for configurations of Positive Energy Districts—Insights from a discrete choice experiment on Swiss households. Energy Policy 2022 , 163 , 112824. [ Google Scholar ] [ CrossRef ]
  • Working Group SET. Plan Temporary SET-Plan ACTION n 3.2 Implementation Plan: Europe to Become a Global Role Model in Integrated, Innovative Solutions for the Planning, Deployment, and Replication of Positive Energy Districts ; 2018. Available online: https://jpi-urbaneurope.eu/wp-content/uploads/2021/10/setplan_smartcities_implementationplan-2.pdf (accessed on 24 June 2024).
  • JPI Urban Europe/SET Plan Action 3.2. In White Paper on PED Reference Framework for Positive Energy Districts and Neighbourhoods ; 2020. Available online: https://jpi-urbaneurope.eu/wp-content/uploads/2020/04/White-Paper-PED-Framework-Definition-2020323-final.pdf (accessed on 24 June 2024).
  • ATELIER. Atelier—Positive Energy Districts. Available online: https://smartcity-atelier.eu/ (accessed on 24 June 2024).
  • EURAC Smart-BEEjS—Human-Centric Energy Districts: Smart Value Generation by Building Efficiency and Energy Justice for Sustainable Living. Available online: https://www.eurac.edu/en/institutes-centers/institute-for-renewable-energy/projects/smart-beejs (accessed on 24 June 2024).
  • Making City Making City—Energy Efficient Pathway for the City Transformation. Available online: https://makingcity.eu/ (accessed on 24 June 2024).
  • +CityxChange. Available online: https://cityxchange.eu/ (accessed on 24 June 2024).
  • Uspenskaia, D.; Specht, K.; Kondziella, H.; Bruckner, T. Challenges and Barriers for Net-Zero/Positive Energy Buildings and Districts—Empirical Evidence from the Smart City Project SPARCS. Buildings 2021 , 11 , 78. [ Google Scholar ] [ CrossRef ]
  • Hedman, Å.; Rehman, H.U.; Gabaldón, A.; Bisello, A.; Albert-Seifried, V.; Zhang, X.; Guarino, F.; Grynning, S.; Eicker, U.; Neumann, H.-M.; et al. IEA EBC Annex83 Positive Energy Districts. Buildings 2021 , 11 , 130. [ Google Scholar ] [ CrossRef ]
  • Gabaldón Moreno, A.; Vélez, F.; Alpagut, B.; Hernández, P.; Sanz Montalvillo, C. How to Achieve Positive Energy Districts for Sustainable Cities: A Proposed Calculation Methodology. Sustainability 2021 , 13 , 710. [ Google Scholar ] [ CrossRef ]
  • Aghamolaei, R.; Shamsi, M.H.; Tahsildoost, M.; O’Donnell, J. Review of district-scale energy performance analysis: Outlooks towards holistic urban frameworks. Sustain. Cities Soc. 2018 , 41 , 252–264. [ Google Scholar ] [ CrossRef ]
  • Bottecchia, L.; Gabaldón, A.; Castillo-Calzadilla, T.; Soutullo, S.; Ranjbar, S.; Eicker, U. Fundamentals of Energy Modelling for Positive Energy Districts. In Sustainability in Energy and Buildings ; Littlewood, J.R., Howlett, R.J., Jain, L.C., Eds.; Springer: Singapore, 2022; Volume 263, Smart Innovation, Systems and Technologies. [ Google Scholar ] [ CrossRef ]
  • Zhang, S.; Ma, M.; Zhou, N.; Yan, J.; Feng, W.; Yan, R.; You, K.; Zhang, J.; Ke, J. Estimation of Global Building Stocks by 2070: Unlocking Renovation Potential. Nexus 2024 , 1 , 100019. [ Google Scholar ] [ CrossRef ]
  • Xiang, X.; Zhou, N.; Ma, M.; Feng, W.; Yan, R. Global transition of operational carbon in residential buildings since the millennium. Adv. Appl. Energy 2023 , 11 , 100145. [ Google Scholar ] [ CrossRef ]
  • Yan, R.; Ma, M.; Zhou, N.; Feng, W.; Xiang, X.; Mao, C. Towards COP27: Decarbonization patterns of residential building in China and India. Appl. Energy 2023 , 352 , 122003. [ Google Scholar ] [ CrossRef ]
  • Yuan, H.; Ma, M.; Zhou, N.; Xie, H.; Ma, Z.; Xiang, X.; Ma, X. Battery electric vehicle charging in China: Energy demand and emissions trends in the 2020s. Appl. Energy 2024 , 365 , 123153. [ Google Scholar ] [ CrossRef ]
  • Orehounig, K.; Evins, R.; Dorer, V. Integration of Decentralized Energy Systems in Neighbourhoods Using the Energy Hub Approach. Appl. Energy 2015 , 154 , 277–289. [ Google Scholar ] [ CrossRef ]
  • Pan, Z.; Guo, Q.; Sun, H. Interactions of District Electricity and Heating Systems Considering Time-Scale Characteristics Based on Quasi-Steady Multi-Energy Flow. Appl. Energy 2016 , 167 , 230–243. [ Google Scholar ] [ CrossRef ]
  • Zhou, Y.; Cao, S.; Hensen, J.L.M. An energy paradigm transition framework from negative towards positive district energy sharing networks—Battery cycling aging, advanced battery management strategies, flexible vehicles-to-buildings interactions, uncertainty and sensitivity analysis. Appl. Energy 2021 , 288 , 116606. [ Google Scholar ] [ CrossRef ]
  • Marrasso, E.; Martone, C.; Pallotta, G.; Roselli, C.; Sasso, M. Assessment of energy systems configurations in mixed-use Positive Energy Districts through novel indicators for energy and environmental analysis. Appl. Energy 2024 , 368 , 123374. [ Google Scholar ] [ CrossRef ]
  • Bruck, A.; Díaz Ruano, S.; Auer, H. A Critical Perspective on Positive Energy Districts in Climatically Favoured Regions: An Open-Source Modelling Approach Disclosing Implications and Possibilities. Energies 2021 , 14 , 4864. [ Google Scholar ] [ CrossRef ]
  • Ali, U.; Shamsi, M.H.; Hoare, C.; Mangina, E.; O’Donnell, J. Review of Urban Building Energy Modeling (UBEM) Approaches, Methods and Tools Using Qualitative and Quantitative Analysis. Energy Build. 2021 , 246 , 111073. [ Google Scholar ] [ CrossRef ]
  • Brunetti, A.; Cellura, S.; Guarino, F.; Longo, S.; Mistretta, M.; Reda, F.; Rincione, R. Development of an Early Design Tool for the Sustainability Assessment of Positive Energy Districts: Methodology, Implementation and Case-Studies. J. Phys. Conf. Ser. 2023 , 2600 , 82020. [ Google Scholar ] [ CrossRef ]
  • Trulsrud, T.H.; Van der Leer, J. Towards a positive energy balance: A comparative analysis of the planning and design of four positive energy districts and neighbourhoods in Norway and Sweden. Energy Build. 2024 , 318 , 114429. [ Google Scholar ] [ CrossRef ]
  • Guasselli, F.; Vavouris, A.; Stankovic, L.; Stankovic, V.; Didierjean, S.; Gram-Hanssen, K. Smart energy technologies for the collective: Time-shifting, demand reduction and household practices in a Positive Energy Neighbourhood in Norway. Energy Res. Soc. Sci. 2024 , 110 , 103436. [ Google Scholar ] [ CrossRef ]
  • Aparisi-Cerdá, I.; Ribó-Pérez, D.; Gómez-Navarro, T.; García-Melón, M.; Peris-Blanes, J. Prioritising Positive Energy Districts to achieve carbon neutral cities: Delphi-DANP approach. Renew. Sustain. Energy Rev. 2024 , 203 , 114764. [ Google Scholar ] [ CrossRef ]
  • Castillo-Calzadilla, T.; Garay-Martinez, R.; Martin Andonegui, C. Holistic fuzzy logic methodology to assess positive energy district (PathPED). Sustain. Cities Soc. 2023 , 89 , 104375. [ Google Scholar ] [ CrossRef ]
  • Derkenbaeva, E.; Jan Hofstede, G.; van Leeuwen, E.; Halleck Vega, S.; Wolfers, J. ENERGY Pro: Spatially explicit agent-based model on achieving positive energy districts. MethodsX 2024 , 12 , 102779. [ Google Scholar ] [ CrossRef ]
  • Eicker, U. Introduction: The Challenges of the Urban Energy Transition. In Urban Energy Systems for Low-Carbon Cities ; Eicker, U., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 1–15. ISBN 978-0-12-811553-4. [ Google Scholar ]
  • Jepsen, B.K.H.; Haut, T.W.; Design, M.J. Modelling and Performance Evaluation of a Positive Energy District in a Danish Island. Future Cities Environ. 2022 , 8 , 1. [ Google Scholar ] [ CrossRef ]
  • Guarino, F.; Bisello, A.; Frieden, D.; Bastos, J.; Brunetti, A.; Cellura, M.; Ferraro, M.; Fichera, A.; Giancola, E.; Haase, M.; et al. State of the Art on Sustainability Assessment of Positive Energy Districts: Methodologies, Indicators and Future Perspectives. Sustain. Energy Build. 2021 , 2021 , 479–492. [ Google Scholar ]
  • Hearn, A.X.; Sohre, A.; Burger, P. Innovative but Unjust? Analysing the Opportunities and Justice Issues within Positive Energy Districts in Europe. Energy Res. Soc. Sci. 2021 , 78 , 102127. [ Google Scholar ] [ CrossRef ]
  • Haarstad, H.; Wathne, M.W. Are Smart City Projects Catalyzing Urban Energy Sustainability? Energy Policy 2019 , 129 , 918–925. [ Google Scholar ] [ CrossRef ]
  • Gouveia, J.P.; Seixas, J.; Palma, P.; Duarte, H.; Luz, H.; Cavadini, G.B.C. Positive Energy District: A Model for Historic Districts to Address Energy Poverty. Front. Sustain. Cities 2021 , 3 , 648473. [ Google Scholar ] [ CrossRef ]
  • Bossi, S.; Gollner, C.; Theierling, S. Towards 100 Positive Energy Districts in Europe: Preliminary Data Analysis of 61 European Cases. Energies 2020 , 13 , 6083. [ Google Scholar ] [ CrossRef ]
  • Rankinen, J.-A.; Lakkala, S.; Haapasalo, H.; Hirvonen-Kantola, S. Stakeholder Management in PED Projects: Challenges and Management Model. Int. J. Sustain. Energy Plan. Manag. 2022 , 34 , 91–106. [ Google Scholar ] [ CrossRef ]
  • Schiele, H.; Krummaker, S.; Hoffmann, P.; Kowalski, R. The “research world café” as method of scientific enquiry: Combining rigor with relevance and speed. J. Bus. Res. 2022 , 140 , 280–296. [ Google Scholar ] [ CrossRef ]
  • Vandevyvere, H.; Ahlers, D.; Alpagut, B.; Cerna, V.; Cimini, V.; Haxhija, S.; Hukkalainen, M.; Kuzmic, M.; Livik, K.; Padilla, M.; et al. Positive Energy Districts Solution Booklet ; European Union: Luxembourg, 2020. [ Google Scholar ]
  • Évora—POCITYF. Available online: https://pocityf.eu/city/evora/ (accessed on 24 June 2024).
  • Commission, E.; European Climate, I.; Agency, E.E.; Alpagut, B.; Zhang, X.; Gabaldon, A.; Hernandez, P. Digitalization in Urban. Energy Systems—Outlook 2025, 2030 and 2040 ; Publications Office of the European Union: Luxembourg, 2022. [ Google Scholar ]
  • Waglé, S.; Singh, J.; Shah, P. Citizen Report Card Surveys: A Note on the Concept and Methodology (English) ; World Bank: Washington, DC, USA, 2004. [ Google Scholar ]
  • Cimini, V.; Giglio, F.; Carbonari, G. D2.4: Report on Bankability of the Demonstrated Innovations. In +CityxChange—Work Package 2 Task 2.7 ; 2019. Available online: https://cityxchange.eu/wp-content/uploads/2020/03/D2.4-Report-on-Bankability-of-the-Demonstrated-Innovations_v3.0-final.pdf (accessed on 24 June 2024).
  • Cordis—Horizon 2020 Results in Brief. A Collaborative Approach Promotes Net Zero Energy Settlements. In Achieving near Zero and Positive Energy Settlements in Europe Using Advanced Energy Technology ; 2021. Available online: https://cordis.europa.eu/article/id/430390-a-collaborative-approach-promotes-net-zero-energy-settlements (accessed on 24 June 2024).
  • Krangsås, S.G.; Steemers, K.; Konstantinou, T.; Soutullo, S.; Liu, M.; Giancola, E.; Prebreza, B.; Ashrafian, T.; Murauskaitė, L.; Maas, N. Positive Energy Districts: Identifying Challenges and Interdependencies. Sustainability 2021 , 13 , 10551. [ Google Scholar ] [ CrossRef ]
  • Prina, M.G.; Manzolini, G.; Moser, D.; Nastasi, B.; Sparber, W. Classification and Challenges of Bottom-up Energy System Models—A Review. Renew. Sustain. Energy Rev. 2020 , 129 , 109917. [ Google Scholar ] [ CrossRef ]
  • Allegrini, J.; Orehounig, K.; Mavromatidis, G.; Ruesch, F.; Dorer, V.; Evins, R. A Review of Modelling Approaches and Tools for the Simulation of District-Scale Energy Systems. Renew. Sustain. Energy Rev. 2015 , 52 , 1391–1404. [ Google Scholar ] [ CrossRef ]
  • Lyden, A.; Pepper, R.; Tuohy, P.G. A Modelling Tool Selection Process for Planning of Community Scale Energy Systems Including Storage and Demand Side Management. Sustain. Cities Soc. 2018 , 39 , 674–688. [ Google Scholar ] [ CrossRef ]
  • Tozzi, P.; Jo, J.H. A Comparative Analysis of Renewable Energy Simulation Tools: Performance Simulation Model vs. System Optimization. Renew. Sustain. Energy Rev. 2017 , 80 , 390–398. [ Google Scholar ] [ CrossRef ]
  • Hall, L.M.H.; Buckley, A.R. A Review of Energy Systems Models in the UK: Prevalent Usage and Categorisation. Appl. Energy 2016 , 169 , 607–628. [ Google Scholar ] [ CrossRef ]
  • Ringkjøb, H.-K.; Haugan, P.M.; Solbrekke, I.M. A Review of Modelling Tools for Energy and Electricity Systems with Large Shares of Variable Renewables. Renew. Sustain. Energy Rev. 2018 , 96 , 440–459. [ Google Scholar ] [ CrossRef ]
  • Neumann, H.M.; Garayo, S.D.; Gaitani, N.; Vettorato, D.; Aelenei, L.; Borsboom, J.; Etminan, G.; Kozlowska, A.; Reda, F.; Rose, J.; et al. Qualitative Assessment Methodology for Positive Energy District Planning Guidelines. In Smart Innovation, Systems and Technologies ; Springer Science and Business Media Deutschland GmbH: Berlin/Heidelberg, Germany, 2022; Volume 263, pp. 507–517. [ Google Scholar ]
  • Li, L.; Lange, K.W. Planning Principles for Integrating Community Empowerment into Zero-Net Carbon Transformation. Smart Cities 2023 , 6 , 100–122. [ Google Scholar ] [ CrossRef ]
  • Turci, G.; Alpagut, B.; Civiero, P.; Kuzmic, M.; Pagliula, S.; Massa, G.; Albert-Seifried, V.; Seco, O.; Soutullo, S. A Comprehensive PED-Database for Mapping and Comparing Positive Energy Districts Experiences at European Level. Sustainability 2022 , 14 , 427. [ Google Scholar ] [ CrossRef ]
  • PED DB: Map—PED-EU-NET|COST ACTION CA19126. Available online: https://pedeu.net/map/ (accessed on 15 January 2024).
  • European Union. New European Bauhaus. Available online: https://new-european-bauhaus.europa.eu/about/dashboard_en (accessed on 30 June 2024).
  • Volpe, R.; Gonzalez Alriols, M.; Martelo Schmalbach, N.; Fichera, A. Optimal design and operation of distributed electrical generation for Italian positive energy districts with biomass district heating. Energy Convers. Manag. 2022 , 267 , 115937. [ Google Scholar ] [ CrossRef ]
  • Bilić, B.; Šmit, K. Evaluation of the New European Bauhaus in Urban Plans by Land Use Occurrence Indicators: A Case Study in Rijeka, Croatia. Buildings 2024 , 14 , 1058. [ Google Scholar ] [ CrossRef ]
  • Fichera, A.; Pluchino, A.; Volpe, R. Local Production and Storage in Positive Energy Districts: The Energy Sharing Perspective. Front. Sustain. Cities 2021 , 3 , 690927. [ Google Scholar ] [ CrossRef ]
  • Cellura, M.; Fichera, A.; Guarino, F.; Volpe, R. Sustainable Development Goals and Performance Measurement of Positive Energy District: A Methodological Approach. Conference paper-Book Chapter. In Sustainability in Energy and Buildings ; Springer: Singapore, 2021; Volume 263, pp. 519–527. [ Google Scholar ]

Click here to enlarge figure

Question #1Question #2Question #3

What are the essential PED DNAs? Can generic PED
archetypes be created based on them?
What are the categories of quality-of-life indicators
relevant for PED development?
How would you use a database tool to learn about PED development process (e.g.,
using static information for
dynamic decision-making)?



Which future technologies would you expect to be adopted in PEDs and cities?What can be the challenges and the barriers in the future (regarding e.g., control, smart solutions, modeling,
technologies) to PED development and diffusion?
What is your expectation for urban and district energy
modeling? How can models help to shape PEDs and cities?

What is the impact of
stakeholders in the PED
design/decision process, what are their interests and how are stakeholders likely to be involved in the overall process?
What costs do you expect to bear and what revenues do you expect to realize from the PED implementation? Which aspects should be included in the organizational/business models?What would you prioritize in terms of energy aspects or
efficiency and social
implications of living in a PED? Which aspects are more relevant for you?


Annex 83 together with other PED initiatives is developing a database of PEDs and PED-Labs: what would be your main interest in consulting the database?Having the outcomes from PED guidelines analysis, what information would be the most interesting for you to see?Who can benefit from the PED research studies and Annex 83 results? Which stakeholders are interested?
CategoriesKey Characteristics
Facts and FiguresPhysical sizes/population size
Geographical location
Climate
Density
Built form
Land use
Energy demand
Renewable energy potential
TechnologiesRenewable energy supplies
Energy-efficiency measures
Energy distribution (e.g., co-generation, district network)
Energy storage
Mobility solutions
Quality of LifeUser comfort
Social-economic conditions
Health impacts (e.g., air pollution, noise pollution)
Accessibility to green space
Accessibility to services (e.g., bike lane,
public transportation)
Local value/sense of community
OthersRegulations/Policies
Stakeholder involvement
Local targets and ambitions
Local challenges
Impacts of PEDs
TypeQuality Categories
TangibleIndoor and outdoor
environmental quality
Physical quality and comfort of the environment
Security and safety
Level and accessibility of servicingPublic and active transport facilities including walkability, energy services (access to affordable energy including access to energy efficiency), sustainable waste management
Access to daily life amenities including education, culture, sports, coworking and study places, provisions for children, but even common gardens or community kitchens
Aesthetic quality
Functional mix
Future-proofness
Acceptable cost of life (affordability, inclusivity)
Equity and just transition
Functional links to realizing circularity and reducing emissions
Citizen engagementInvolvement in decision-making
Social diversity in participation
Access to greeneryThe possibility to reconnect with nature
Sufficient open space
Information flowFrom creating awareness over enhancing knowledge and literacy up to capacity of control
Transparency on energy flows and information for the end prosumer
Insight in applicable PED solutions and in healthy lifestyles
IntangibleSense of well-being
Quality of social connections
Sense of personal achievement
Level of self-esteem
Sense of community
Degree of cooperation and engagement for the common interest
Time spent with friends (outdoor)
Budget available at the end of the month to spend freely
Not being aware or realizing of living in a PED
Technology GroupsSolutions
Energy efficiencyNew energy-efficient buildings and building retrofitting.
Nature-based solutions (natural sinks) and carbon capture solutions (CCS)
Efficient resource management
Efficient water systems for agriculture (smart agriculture, hydroponics, agrivoltaics, etc.)
Organic photovoltaics and a circular approach (second life materials, like batteries)
Energy flexibilityHardwareStorage (long-term and short-term)
Monitoring systems (sensors, smart meters, PLCs *, energy management systems, etc.)
Vehicle to grid
Heat pumps
Electronic devices like IoT * technologies
Buildings fully automated with real time monitoring behind-the-meter and automated actions
Cybersecurity, data rights and data access
Demand management and remote control of devices
SoftwareEdge computing
Machine learning
Blockchain
Digital twins
5G
City management platform and platforms for city planning (space, refurbishment, climate change, etc.)
E-mobilityPromotion of shared vehicles over individual car use, lift sharing, and alternative ways (like micromobility) to collective transports
Soft mobilityPromotion of a lifestyle that require less use of cars, i.e., “soft mobility” solutions like low emission zones or banning the entrance of some type of car (e.g., Singapore and Iran have policies in place to allow only certain car groups to drive freely in certain periods)
E-vehicle charging stations and vehicle-to-grid solutions
Low-carbon generationPhotovoltaics
Energy communities
Electrification of heating and cooling (H&C) using heat pumps, district heating networks utilizing waste heat, or solar thermal technologies
Virtual production
Fusion technology
Challenges and BarriersKey Topics
Capacity building and
policy issues
Political and legal barriers
Regulatory frameworks and policy constraints
Tailored legislation
Bridging the knowledge gap
Inadequate data sharing practices
Securing sufficient financial resources
Lack of clear regulations defining PED classification
Active involvement of policymakers
Widespread dissemination of knowledge
Collaborative data-sharing efforts
Securing adequate funding
Establishing supportive policies and regulations
Social challenges and
considerations
Cultural barriers
Access to affordable and sustainable energy for all
Building social agreements and fostering collaboration
Energy literacy
Addressing personal behavior acceptance
Transition strategy for inclusivity
Social inclusion and trust-building
Data sharing and privacy concerns
Overcoming public opposition and promoting knowledge dissemination
Financial barriersLong-term storage investment and space competition
Insufficient investment
High upfront costs
Allocation of costs among stakeholders
Incentives for participation
Addressing investment challenges for different stakeholders
Accounting for battery costs
Data managementData standardization
Data security measures and protocols
Sustainability and maintenance of data infrastructure
Privacy regulations and data anonymization techniques
Sustainable business models and ownership structuresStandardization of control technologies and replication strategies
Grid management approaches
Deep penetration of sustainable technologies
Implementation of predictive models
Long-term maintenance activities and resident data collection
Balancing diverse requirements
Addressing grid operation challenges
Managing multiple independent energy districts
Inclusivity strategies for digital technology reliance
Managing production peaks and defining the role of buildings and districts
Effective management strategies for grid congestion and
stability
Categories of InnovationInnovation TypesPossible Revenues/Advantages
in PED Business
Model/Governance
Possible Costs/Drawbacks in PED Business
Model/Governance
ConfigurationProfit ModelProviding thermal comfort
instead of a certain amount of thermal energy to inhabitants
Misconducts or rebound effect
NetworkInclusion of the PED into larger projects and international
networks, possibility of
co-financing and knowledge sharing
Misalignment or delay of the PED project to the original timeline due to constrains related to international activities and networking
StructureParticipation of the real estate companies/investors in the development and management of the energy infrastructure and EV mobility services as well as building managementLack of knowledge, involvement in activities out of the usual business of investors
Free or almost free thermal
energy supply from “waste
energy” sources
Failure of the network due to unliteral decisions of a member in ceasing the provision of
energy
ProcessInvolvement of future inhabitants in the design phase of the energy community since the early stage, to share the sense of belonging and ownershipReluctancy of inhabitants to participate in additional expenses or being involved in “entrepreneurial” activities or bored by the participation in boards and governance structures
OfferingProduct PerformanceInvestors and companies
involved in the PED
development take profit from their role of frontrunner
placing them before the
competitors or entering in new market niches
Hi-tech BA and BEM systems may result costly in O&M, because of digital components, cloud and computing services, rapid aging of technology
Product SystemIncluding EV available for PED users may generate new incomes and reduce the need
of individual cars. The
integration of EV in the
energy system may offer
“flexibility services”
Lack of knowledge, involvement in activities out of the usual business of investors/real estate companies.
Low interest of users in participating to the flexibility market, because of discomfort (unexpected empty battery of the EV)
ExperienceServicesProvision of high tech and high-performance buildings, with outstanding energy performances (lower heating/cooling costs) and sophisticated Building Automation and Energy Management systemsSophisticated Building Automation and Energy Management systems may result “invasive” to users, asking for continuous interaction with complicate systems, or leaving them not enough freedom to choose (e.g., opening the windows is not possible to achieve some energy performance)
ChannelThe PED is promoted as a rewarding sustainable investment, this allows the city to attract more clean investments (public funds, investment funds, donors), speeding up the energy transitionThe communication of the characteristics of the PED is not done in the proper way
BrandGold class rated buildings may have an increased value on the market, resulting in higher selling and rental costs, occupancy rate. The high architectural quality is appreciated by the marketThe Branding/certification of the PED is not recognized by the market as an added value.
The development of the PED takes longer as expected.
Technology failures during the implementation or operation phase create a bad reputation and discourage future similar activities
Customer EngagementThe PED is available as a
digital twin, users are engaged via a dedicated app, allowing interaction, communication, reporting, monitoring of bills, etc.
The PED is perceived by users (e.g., social housing tenants) as a hassle and not responding to their needs, because they have not been involved in the identification of peculiar traits since the beginning
CategoryBeneficiaries
Citizens and communitiesCitizens, inhabitants, residents, general public, local communities and neighborhoods, municipalities and provinces, energy communities, and socially disadvantaged groups.
City decision-makers and plannersCity decision-makers, city planners, local authorities, policy-makers, public administrations, politicians, local and national governments.
ResearchScientists, publishers, and research organizations.
Private companies and technology developersPrivate companies of RES technologies, ICT companies, start-ups and new companies, entrepreneurs, technology developers and other companies involved in local development (tech development and evaluation).
Energy providersEnergy providers, grid operators.
Education stakeholdersStudents and teachers.
Non-governmental organizations (NGOs)NGOs and other civil society groups
CategoryComments
StrategiesMost comments dealt with the strategies on how to achieve PEDs, that should focus on success factors of PED initiatives, technologies and stakeholders rather than a standardized approach
ReferencesUseful information, special attention to Liwen Li, planning principles for integrating community empowerment into zero-carbon transformation
DefinitionsHelp to reduce uncertainty
BoundariesEnergy balance calculations, mobility, definition (of buildings)
FinanceFinancial mechanisms, support schemes
Citizen engagementFrom engagement to empowerment
ManagementProcess management, organizing involvement, information provision
PolicyIncentives, regional policies
Flexibility/Grid interactionTimesteps, credit system
FormDissemination through video and other forms (not only written information)
CategoryComments
Lessons learnedSpecial reference to real life implementation
ResultsData analysis and potential research on the field
Metadata as the useful information that can the real goal of consultation
Benchmarking to compare PEDs
Need to normalize results depending on a number of factors (size, location…) to really compare different initiatives
Privacy and data protection
Sets of technologies and solutions-
Economic parametersAs a way to benchmark the different PED technologies
Citizen engagement Energy poverty
Prosumers
From engagement to empowerment
Definition and boundariesNeed to standardize and have a reference framework to establish the energy balance
Contact personsIt is very valuable to have a contact address to ask more about the initiative
Regulatory frameworkDrivers and Enablers
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Kozlowska, A.; Guarino, F.; Volpe, R.; Bisello, A.; Gabaldòn, A.; Rezaei, A.; Albert-Seifried, V.; Alpagut, B.; Vandevyvere, H.; Reda, F.; et al. Positive Energy Districts: Fundamentals, Assessment Methodologies, Modeling and Research Gaps. Energies 2024 , 17 , 4425. https://doi.org/10.3390/en17174425

Kozlowska A, Guarino F, Volpe R, Bisello A, Gabaldòn A, Rezaei A, Albert-Seifried V, Alpagut B, Vandevyvere H, Reda F, et al. Positive Energy Districts: Fundamentals, Assessment Methodologies, Modeling and Research Gaps. Energies . 2024; 17(17):4425. https://doi.org/10.3390/en17174425

Kozlowska, Anna, Francesco Guarino, Rosaria Volpe, Adriano Bisello, Andrea Gabaldòn, Abolfazl Rezaei, Vicky Albert-Seifried, Beril Alpagut, Han Vandevyvere, Francesco Reda, and et al. 2024. "Positive Energy Districts: Fundamentals, Assessment Methodologies, Modeling and Research Gaps" Energies 17, no. 17: 4425. https://doi.org/10.3390/en17174425

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

IMAGES

  1. Research Hypothesis: Definition, Types, Examples and Quick Tips

    forms of hypothesis in research methodology

  2. How to Do Strong Research Hypothesis

    forms of hypothesis in research methodology

  3. 13 Different Types of Hypothesis (2024)

    forms of hypothesis in research methodology

  4. Research Hypothesis: Complete Overview (With Examples & Types)

    forms of hypothesis in research methodology

  5. Hypothesis Meaning In Research Methodology

    forms of hypothesis in research methodology

  6. Hypothesis In Chapter 1 Example

    forms of hypothesis in research methodology

VIDEO

  1. NEGATIVE RESEARCH HYPOTHESIS STATEMENTS l 3 EXAMPLES l RESEARCH PAPER WRITING GUIDE l THESIS TIPS

  2. Hypothesis

  3. Qualities of a good hypothesis

  4. Alternate hypothesis

  5. Importance of Hypothesis

  6. Theory vs Hypothesis

COMMENTS

  1. Research Hypothesis: Definition, Types, Examples and Quick Tips

    Research Hypothesis: Definition, Types, Examples and ...

  2. What is a Hypothesis

    Definition: Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation. Hypothesis is often used in scientific research to guide the design of experiments ...

  3. What is a Research Hypothesis: How to Write it, Types, and Examples

    It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis. 7.

  4. Types of Research Hypotheses

    There are seven different types of research hypotheses. Simple Hypothesis. A simple hypothesis predicts the relationship between a single dependent variable and a single independent variable. Complex Hypothesis. A complex hypothesis predicts the relationship between two or more independent and dependent variables. Directional Hypothesis.

  5. How to Write a Strong Hypothesis

    The specific group being studied. The predicted outcome of the experiment or analysis. 5. Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

  6. 7 Types of Research Hypothesis: Examples, Significance and Step-By-Step

    Alternative Hypothesis (H1): The new teaching method leads to improved student performance compared to the traditional teaching method. These examples highlight the structure of research hypotheses, where the null hypothesis represents no effect or relationship, while the alternative hypothesis suggests the presence of an effect or relationship.

  7. Research Hypothesis: What It Is, Types + How to Develop?

    Research Hypothesis: What It Is, Types How to Develop?

  8. Research Hypothesis In Psychology: Types, & Examples

    Research Hypothesis In Psychology: Types, & Examples

  9. What Are The Types of Research Hypothesis? + [Examples]

    This refers to a lack of relationship between different variables. For example, plants would grow irrespective of the source of water, natural or artificial. It proposes a negative statement to support the researcher's discovery, showing that no relationship exists between the two variables. 7. Alternative Hypothesis.

  10. What Is A Research Hypothesis? A Simple Definition

    What Is A Research Hypothesis? A Simple Definition

  11. Hypothesis: Definition, Examples, and Types

    A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process. Consider a study designed to examine the relationship between sleep deprivation and test ...

  12. A Practical Guide to Writing Quantitative and Qualitative Research

    A Practical Guide to Writing Quantitative and Qualitative ...

  13. Research Methodology

    Qualitative Research Methodology. This is a research methodology that involves the collection and analysis of non-numerical data such as words, images, and observations. This type of research is often used to explore complex phenomena, to gain an in-depth understanding of a particular topic, and to generate hypotheses.

  14. What is Hypothesis Testing? Types and Methods

    Alternative Hypothesis (H1) or the research hypothesis states that there is a relationship between two variables (where one variable affects the other). The alternative hypothesis is the main driving force for hypothesis testing. ... All in all, there are 2 most common types of hypothesis testing methods. They are as follows - Frequentist ...

  15. A tutorial on methodological studies: the what, when, how and why

    In this tutorial paper, we will use the term methodological study to refer to any study that reports on the design, conduct, analysis or reporting of primary or secondary research-related reports (such as trial registry entries and conference abstracts). In the past 10 years, there has been an increase in the use of terms related to ...

  16. (PDF) Hypothesis Types and Research

    (PDF) Hypothesis Types and Research

  17. Concept, Characteristics, Types And Sources Of Hypothesis In Research

    Back to: Introduction to Educational Research Methodology. Concept, Characteristics, Types and Sources of Hypothesis in Research Methodology. A hypothesis is used for explaining a phenomenon. Hypothesis is essential to discover cause-and-effect relationships. It provides direction for research and prevents from collecting unnecessary and ...

  18. What is Research Methodology? Definition, Types, and Examples

    What is Research Methodology? Definition, Types, and ...

  19. Research Design

    This will guide your research design and help you select appropriate methods. Select a research design: There are many different research designs to choose from, including experimental, survey, case study, and qualitative designs. Choose a design that best fits your research question and objectives.

  20. Research Methods

    Research Methods | Definitions, Types, Examples

  21. Step-by-step guide to hypothesis testing in statistics

    Hypothesis testing is a method for determining whether data supports a certain idea or assumption about a larger group. It starts by making a guess, like an average or a proportion, and then uses a small sample of data to see if that guess seems true or not. ... Confirms Research Findings: It makes sure that research results are accurate and ...

  22. 5.5 Introduction to Hypothesis Tests

    When using the p-value to evaluate a hypothesis test, the following rhymes can come in handy:. If the p-value is low, the null must go.. If the p-value is high, the null must fly.. This memory aid relates a p-value less than the established alpha ("the p-value is low") as rejecting the null hypothesis and, likewise, relates a p-value higher than the established alpha ("the p-value is ...

  23. Understanding Research Questions, Hypotheses, and Variables in

    Now, the research question specifically identifies what part of that issue or problem we hope to answer or address. As implied by its name, our research question is presented in the form of a question. The type of question we are asking is often driven by the type of study we are conducting in our research methodology.

  24. Media Review: The Sage Handbook of Mixed Methods Research Design

    I am pleased to offer this media review of the Sage Handbook of Mixed Methods Research Design edited by Dr Cheryl Poth.Dr Poth is a leading Canadian expert in the field of mixed methods research. Dr Poth is a Professor in the Faculty of Education and faculty member of the Centre for Applied Research in Assessment and Measurement in Education (CRAME) at the University of Alberta.

  25. Comprehensive Guide to Quantitative Research Methods in Education

    Once the study is focused, the researcher needs to review both seminal works and current peer-reviewed primary sources. Based on the research question and on a review of prior research, a hypothesis is created that predicts the relationship between the study's variables. Next, the researcher chooses a study design and methods to test the ...

  26. Sjögren's Foundation Announces 2024 Research Grant Awardees

    The Sjögren's Foundation is excited to announce the selection of five new research grant recipients for the Foundation's High Impact Grant, Dynamic Grant, and Pilot Grants. Types of Foundation Grants and their ImpactThe Sjögren's Foundation High Impact Grants are given to more fully developed research proposals to help a project that has preliminary data and good scientific methodology ...

  27. Energies

    The definition, characterization and implementation of Positive Energy Districts is crucial in the path towards urban decarbonization and energy transition. However, several issues still must be addressed: the need for a clear and comprehensive definition, and the settlement of a consistent design approach for Positive Energy Districts. As emerged throughout the workshop held during the fourth ...